
Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58
Иркутск (395)279-98-46
Казань (843)206-01-48
Калиниград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самкра (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (8652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69

Пермь (342)205-81-47

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (6422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

приборы разработки и производства

Компаратор-калибратор универсальный КМ300 с модификациями. Постоянный, переменный ток и сопротивление. Погрешность до 0,0001%.

Меры электрического сопротивления МС3050М, МС3061, МС3075, МС3080, МС3080 наивысшей стабильности кл. до 0,0005. Диапазон сопротивлений от 0,0001 Ом до 10 МОм.

Компаратор сопротивлений. Состоит из комплекта приборов КМ300P(K) и КМ300C. Диапазон сопротивлений от 10⁻³ до 10⁷ Ом-Погрешность до 0,0001%.

Омметр цифровой СО 3001. Пределы измерения от 1 Ом до 1ГОм. Кл. до 0,002.

Набор мер сопротивления термостатированный МС3050Т. ТКС до ±0,003ppm/°С. Погрешность до 0,0001%. Количество мер - до 4. Диапазон от 10⁻¹ до 10⁵ Ом.

Комплект термостатированных мер сопротивления МК300 с коммутатором. Диапазон от 10⁻³ до 10⁵ Ом. Кл. до 0,001. Количество мер до 9.

<u>Цифровые образцовые приборы серии 3010.</u> действующего значения по постоянному и переменному току. Амперметры, вольтметры, ваттметры, многофункциональные ваттметры. Кл. **0,1.** Заменяют приборы Д5хххх с зеркальной шкалой.

Многозначная мера электрического сопротивления МС3055. Кл. 0,02 и 0,05. Диапазон от 0,01 до 1 222 222,21 Ом.

Мера электрического сопротивления многозначная МС3071 (цифровая). Диапазон модификаций от 0,02 Ом до 100 МОм. Кл. до 0,001.

Многозначная мера электрического сопротивления МС3057. Кл. 0,005 и 0,01. Диапазоны от 0,01 до 1 222 222,21 Ом и от 0,001 до 122 222,221 Ом.

Мера электрического сопротивления постоянного тока многозначная МС3070М-1 диапазон от 0,01 до 111111,1 Ом.Кл. до 0,001. МС3070М-2 - диапазон от 1 до 11111,1 Ом. Шаг 0,001 Ом. Кл. до 0,001.

"ЗИП-НАУЧПРИБОР"

VI Специали

Имитаторы термопреобразователей МК3002. Воспроизведение сопротивления платиновых и медных термосопротивлений. Погрешность до 0.012°C. Каналов - 2.

Магазины нагрузок МР3025, МР3027 🔯 для поверки трансформаторов напряжения 100В и 57,7 (100√3)В и тока с токами 1А или 5А.

Щитовые цифровые приборы серии 3020 действующего значения. Еврогабарит. Класс точности 0,2. Установка коэффициентов трансформации.

Догрузочные резисторы МР3021 для догрузки измерительных трансформаторов напряжения и тока.

Щитовые цифровые приборы серии 3021 габарита 120х120мм действующего значения одно и трехфазные. Кл. 0,2.

> Установка коэффициентов трансформации.

Преобразователи измерительные многофункциональные действующего значения. Кл. 0,2, по мощности - 0,5, по частоте - 0,01.

49990

Устройства индикации щитовые цифровые CE3020. Интерфейс RS485.

Приборы поиска неисправности ЭИ3007М (ПОИСК) скрытой электропроводки на расстоянии от 2см до 2м.

Термостат ТВ-1. Объем камеры 500х400х400мм. Точность поддержания температуры - 0,02°C

Приборы обнаружения хищения электроэнергии ЭИ3008 (АИСТ). Измерение на высоте до 7,5м. Напряжение до 600В.

В разработке:

Многозначная мера электрического сопротивления МС3059. Отличие от МС3057 - четырехзажимный режим для декады 0,001 Ом.

измерени

IOD WHUBEL

ЕМЕТРОЛОГИ	ПРОИЗВОДСТВО (МЕТРОЛОГИЯ ЭНЕРГЕТИКА)						
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
	1. Меры (стандарты)						
	электрического сопротивления						
	1.1. Меры сопротивления наивысшей стабильности МС3050М	7					
OK IS N	1.2. Меры сопротивления низкоомные МС3080, МС3080М	8					
	1.3. Меры сопротивления МС3081 (0,0001 Ом); МС3075 (1 и 10 МОм); МС3061	9					
	2. Приборы электроизмерительные						
pe	прецизионные (эталонные)						
(ue) [88 66614 0]	2.1. Компараторы-калибраторы универсальные КМ300 и их модификации.	10					
	2.2. Компараторы сопротивлений (комплект приборов КМ300Р(К)+КМ300С).	13					
Marine Marine	2.3. Омметр цифровой СО 3001.	14					
31/11	2.4. Серия 3010. Цифровые лабораторные миллиамперметры и амперметры СА3010,	15					
	вольтметры СВ3010, ваттметры СР3010, многофункциональные ваттметры СМ3010.						
150	being the the case of the the case of the						
***************************************	3. Приборы прецизионные (эталонные)						
	на основе мер сопротивления						
	3.1. Наборы мер сопротивления термостатированные МС3050Т.	17					
200	3.2. Комплекты термостатированных ОМЭС типа МК300 с коммутатором.	18					
ICH O (v.)	3.3. Имитаторы термопреобразователей МК3002 (Рt,П,М, термо, теплометрия).	18					
A STATE OF THE PARTY OF THE PAR		19					
WW.	3.4. Меры сопротивления многозначные МС3070М						
000 0000	3.5. Меры сопротивления многозначные МС3071 (цифровые магазины).	20					
2810	3.6. Многозначные меры сопротивления МС3057.	21					
	3.7. Многозначные меры сопротивления МС3055.	22					
A. Linie o DBC	3.8. Термостат ТВ-1.	22					
1288							
ioena sano	4. Приборы и преобразователи измерительные						
A	щитовые действующего значения						
100 12 201 100 12	4.1. Серия 3020. Цифровые щитовые амперметры СА3020, вольтметры СВ3020,	23					
	частотомеры СС3020, ваттметры СР3020, варметры СР3020.						
	4.2. Серия 3020. Преобразователи измерительные многофункциональные СН3020.	25					
	4.3. Серия 3020. Устройства индикации СЕ3020.	27					
	4.4. Серия 3021. Цифровые щитовые габ. 120х120 амперметры СА3021, вольтметры	28					
	СВ3021, частотомеры СС3021, ваттметры СР3021, варметры СР3021, ваттварметры СК	(302)					
2013 года ча							
in a mini	5. Приборы для поверки и догрузки						
W Santon, 9	трансформаторов напряжения и тока						
See!	5.1. Магазины нагрузок МР3025 для поверки трансформаторов напряжения.	31					
	5.2. Магазины нагрузок МР3027 для поверки трансформаторов тока.	32					
	5.3. Догрузочные резисторы МР3021-Н для трансформаторов напряжения.	32					
	5.4. Догрузочные резисторы MP3021-Т для трансформаторов тока.	33					
0000 9 TO TO THE REAL PROPERTY OF THE REAL PROPERTY	2 Mor black in the beautiful att 2021 I day thatehopiatohop total	3.					
	6. Прецизионные резисторы, делители, шунты						
Mr 3000 Mg 3001	6.1. Резисторы высокостабильные измерительные МРЗ 000 и особостабильные.	34					
XXX ==- XXX ==- ==	MP3000M. Делители напряжения прецизионные МД3000.	9.					
	6.2. Резисторы высокостабильные прецизионные МРЗ040, МРЗ042, измерительные	3					
William Control		31					
	высокой мощности МР3044, МР3045, высокостабильные низкоомные МР3050,						
OCCUPATION OF THE PROPERTY OF	прецизионные безреактивныеМР3060.						

38
39
39
40
3

Предприятие образовано в 1992г. (КБ с 1949г.) Уставный капитал 1100000р. Лицензия Госстандарта РФ (Федерального Агенства по техническому регулированию и метрологии) №002776-ИР, №005036-ИР на изготовление и ремонт средств измерений. Специализация - приборостроение, метрология, энергетика (разработка и производство). Основной оборот - производственная деятельность. Выпускаемые приборы - собственной разработки. С 2003г. предприятие располагается на собственной территории. В 2003г. создано дочернее предприятие НПП "Резист" по производству прецизионных резисторов.

С 2006г. по поставкам приборов в сфере специального назначения предприятие работает в сотрудничестве с группой компаний "НПЦентр" (Москва).

Получатели продукции - более 3000: институты и региональные центры Госстандарта, предприятия ТЭК, МО, метрологические службы и лаборатории предприятий, предприятия ЖКХ.

Даты разработки и начала производства 1992-19952 - Процессорные балансировочные case-комплекты СБ3000 для морфлота МО РФ. 1995-2002г - Диспетчерские щиты управления для энергетики. 1997-2003г - Цифровое тепловычислители ТК3002, ТК3003 и теплосчетчики ТФ3002, ТФ3003. и метрологи 1997-2001г - Изготовление эталона Ома Казахстана и эталона Ома для МО РФ. 1999 - Приборы обнаружения хищения электроэнергии ЭИЗ008 (Аист) и поиска скрытой проводки ЭИЗ007 (Поиск). 20012 - Цифровые щитовые амперметры, вольтметры и частотомеры серии 3020. 2002г - Изготовление и поставка эталона Ома Юго-восточной Азии (Сингапур). Цифровые **б октября** щитовые ваттметры и варметры серии 3020, магазины нагрузок МР3025 для поверки трансформаторов в энергетике, имитаторы термосопротивлений МК3002 для поверки термопреобразователей. Знак "100 лучших товаров России" на приборы серии 3020. Предприятие, состоящее из КБ и экспериментального производства вышло из состава ОАО "Краснодарский ЗИП" Средств 2003г - Точные измерительные (и повышенной мощности) резисторы MP3040 - MP3060. Зо-UNCICOUNC лотая медаль ВВЦ. Образование дочернего предприятия НПП "Резист". Приобретение недвижимости. 2004г - Цифровые лабораторные приборы серии 3010 класса 0,1 и меры электрического сопротивления МС3050 в диапазоне от 0,01 до 100 000 Ом. 2005г - Цифровые лабораторные ваттметры СР3010 класса 0,1 серии 3010, догрузочные резисторы МР3021-Н и МР3021-Т для измерительных трансформаторов напряжения и тока. Диплом "Лучший отечественный измерительный прибор" на приборы серии 3010 и 3020. Диплом "Лидер регионального бизнеса". $2006_{\it \ell}$ - Магазины нагрузок MP3027 для поверки трансформаторов тока в энергетике. Диплом "Лучший отечественный измерительный прибор" на приборы серии 3010. По поставкам при-THER OF THEY AREDIE боров в сфере специального назначения предприятие работает в струдничестве с компанией "НПЦентр" (Москва). 2007г - Многофункциональные измерительные преобразователи СН3020 и устройства инди-112810 кации цифровые щитовые серии 3020. Расширение номенклатуры догрузочных резисторов МР3021 для трансформаторов. л. Московс 2006-2009г - Компараторы-калибратораы универсальные КМ300 и его модификации с наилучшей погрешностью 0,0001%. 2008-2009≥ - Термостатированные наборы мер сопротивления МС3050Т наивысшей стабиль-I. A. 5 ности. 2009-2010г - Цифровые щитовые амперметры, вольтметры, частотомеры, ваттметры, варметры, ваттварметры серии 3021 габарита 120х120мм, магазины сопротивлений МС3055 класса 0,02 и 0,05, меры сопротивления низкоомные МС3080 класса до 0,001. Знак качества на приборы КМ300, МС3050 и серию 3010. 2010-2011г - Меры сопротивления наивысшей стабильности MC3050M класса 0,0005, коммутируемые термостатированные меры сопротивления МК300 класса до 0,001. ря 2613 года на 2011-2012г - Магазины сопротивления МС3070 класса до 0,001, компараторы сопротивлений интоколитом и оп класса 0,0001 на базе калибратора номинальных напряжений и токов КМ300С. 2012-2014г. - Универсальные меры сопротивления МС3050М повышенной мощности, компараторы сопротивлений класса 0,0001 на базе калибратора КМ300Р. 2013-2015г. - 3-фазные амперметры и вольтметры серии 3021, многофункциональные цифровые ваттметры СМ3010,, меры электрического сопротивления МС3081 номиналом 0,0001 Ом. **2015-2016г.** - Магазины сопротивлений MC3070M-2 с дискретностью 0,001 Ом. 2016-2017г. - Цифровые магазины сопротивлений МС3071 кл. до 0,001, цифровые омметры СО 3001 кл. 0,002, магазины сопротивлений МС3057 кл. до 0,005, меры электрического сопротивления МС3075 номиналом 1МОм и 10МОм кл. 0,01. 2017г. - В разработке многозначная мера электрического сопротивления в четырехзажимном

исполнении от 0,001 до 122 222,221 Ом, кл. 0,005 и 0,01.

<u>производство</u>

Раздел 1.

Метрология. Меры (стандарты) электрического сопротивления.

СТАНДАРТЫ СОПРОТИВЛЕНИЯ

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ОДНОЗНАЧНЫЕ ГЕРМЕТИЗИРОВАННЫЕ

наивысшей стабильности <u>MC3050M-1</u>, повышенной мощности <u>MC3050M-2</u>, низкоомные <u>MC3050M-3</u>

Назначение: государственные эталоны, образцовые и рабочие меры в цепях постоянного тока.

- **◆ Номинальные значения сопротивления** любые в диапазоне от 1 до 100000 Ом для MC3050M-1, от 1 до 10000 Ом для MC3050M-2, 0,1; 0,01; 0,001 Ом для MC3050M-3.
- ◆ **Нестабильность** за 1 год лучшая до ±1ppm (для рабочих эталонов в интервале сопротивлений от 1 до 100000 Ом).
- ◆ Изменение сопротивления после циклических воздействий температуры: от 0 до +30°C пренебрежимо мало; от 0 до +100°C <0,5 ppm.
- Суммарное изменение сопротивления за 15 лет наблюдений ≤±2ppm.
- ◆ **Габариты, масса:** MC3050M-1 и MC3050M-3 84,5х59х59мм, 0,38кг; MC3050M-2 90х70х70мм, 0,9кг.

Аттестация мер MC3050M-1, MC3050M-2, с погрешностью 0,2ppm и лучше производится в ФГУП ВНИИМ им. Д.И. Менделеева.

	Па	Параметры МС3050М-1			Парамет	гры МС	3050	M-2	Парам	етры	MC30)50-3	
Годовая нестабильность, ppr	n <	1	2,5	5	8	1	5	10	15	10	20	50	1100
Погрешность аттестации, рр			Ī	2	3,5	0.5	2	3	5	-	-	•	-
Класс точности по	Раб	очне	0.0005	0,001	0,002	Рабочие	0,0005	0,001	0,002	0,001	0,002	0,005	0,01
ΓΟCT 8.237-2003	этал	юны				эталоны							
Мощность расноминал	квна	10		50		50	2	200			50)	
сеивания, мВт -максимал	ьная	-	10	0	200	200	500	10	000		200		
ТКС а, 10 ⁻⁶ 1/°С -типс	вое	от -1 до +3,5			(от -1 до	+3,5			от -1 д	10 +5		
-по за	казу		±0.5				± 0.5	,			-		
Отклонение действитипо	вое		±5()			±100				±1	00	
тельног значения сопо за	казу		±5	5			±30					-	
противления от номи-													
нального, ррт													
Температура среды - нормал	ьная 20:	t0,1	20±0	1,0	20±0,2	20±0,1	20±	:0,1	20±0,2	20±0,1	20±0,2	20±0	0,5
среды, °С - рабоча	я 20=	€0,5	20±		20±2	20±0,5	20±	1	20±2	20±1	20±2	20±	:5

Высокие метрологические характеристики подтверждены ведущими метрологическими центрами: Россия (ВНИИМ, ГНИИИ-32), Германия (РТВ), Италия (IEN), Швейцария (ОFMET), Сингапур (PSB), Финляндия (VTT), Швеция (NMI), Норвегия (JV), Канада (NRS), Англия (NPL). Расширенный диапазон номиналов обеспечивает единство температурных измерений с эталонами платиновых термометров сопротивления по Международной Температурной Шкале (МТШ-90).

Разработаны взамен мер сопротивления P3030, P321, P331, MC3005, MC3006, MC3007, MC3050. **Выпускаются** по ТУ 4225-039-16851585-2010, соответствуют ГОСТ 23737-79.

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ОДНОЗНАЧНЫЕ МС3080, универсальные повышенной мощности МС3080М

Предназначены для применения в качестве образцовых и рабочих мер электрического сопротивления в воздушной и жидкостной средах (конденсаторное масло, керосин, кремний-органическая жидкость). Корпус мер одновременно служит электростатическим экраном и имеет винт заземления.

Меры МС3080 разработаны и выпускаются взамен мер сопротивления P3030, P3031/2, P321, P310 и имеют повышенную стабильность сопротивления во времени, повышенную нагрузочную способность, герметизированный резисторный элемент, повышающий надежность меры.

Меры МС3080М расширяют функциональные возможности мер МС3080 по нагрузочной способности до 2Вт и обеспечивают работу **на переменном токе** с частотой до 10кГи.

- Класс точности (нестабильность за год): 0,001; 0,002; 0,005; 0,01.
- **◆ Номинальные значения сопротивления**, Ом: 0,001; 0,01; 0,1; 1; 10.
- ♦ TKC α , 1*10⁻⁶ 1/°C: ±1; ±3; ±5.
- Мощность рассенвания приведена в таблице.

Мощность		Номинальные значения сопротивления, Ом								
рассеивания,		MC3080				MC3080M				
Вт	0,001	0,01	0,1	1,0	10	0,001	0,01	0,1	1,0	10
Номинальная	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1
Максимальная	1,0	1,0	1,0	1,0	1,0	2,0	2,0	2,0	2,0	2,0
Предельная	2,5	2,5	2,5	2,0	2,0	3,0	3,0	3,0	2,5	2,5

- ullet Допускаемое отклонение действительного значения сопротивления от номинального на постоянном токе, % не более : ± 0.01 .
- ◆ Погрешность аттестации, %: на постоянном токе ±0,0002; ±0,0005;
 на переменном токе ±0,006 для МС3080М.

По требованию Заказчика меры изготавливаются на любое значение сопротивления в диапазоне от 0,001 до 10 Ом и необходимое значение ТКС (температурного коэффициента сопротивления).

◆ Частотная погрешность мер MC3080M на переменном токе для классов точности 0,001; 0,002; 0,005; 0,01 по ГОСТ 23737:

Номиналь-	Пред	ел допу	скаемой	Постоян-	Допускаемое откло-		
ные значе-	погр	ешност	и на пер	еменно	M	ная вре-	нение действитель-
ния сопро-	TO	же, % на	а частот	ах, Гц		мени т, с	ного значения со-
тивления	200	400	1000	5000	10000		противления, %
10	± 0.002	± 0.002	± 0.002	± 0.005	±0,01	$1x10^{-8}$	
I	$\pm 0,005$	± 0.005	± 0.005	± 0.01	± 0.01	$1x10^{-7}$	±0,01*
0,1	± 0.01	± 0.01	± 0.01	± 0.02	± 0.02	$25x10^{-8}$	
0,01	± 0.02	± 0.03	± 0.03	±0.2	±0,5	-	±0,02*
0,001	$\pm 0,05$	± 0.05	±0,2	±0,6	-	-	±0,05*

* - на частоте 1000Гц

◆ Габаритные размеры: - для MC3080 - 88x59x59мм, масса - 0,3кг;

- для MC3080M - 120x60x60мм, масса - 0,7кг.

Соответствуют ГОСТ 23737-79. Выпускаются: MC3080 - по ТУ 4225-038-16851585-2009; MC3080M - по ТУ 4225-042-16851585-2013;

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация,

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ MC3081 0,0001 Ом наивысшей мощности

Предназначены для применения в качестве образцовых и рабочих мер электрического сопротивления при поверочных и калибровочных работах с шунтами и мощными измерительными резисторами с предельной мощностью до 100Вт. Меры могут работать в воздушной или жидкостной средах (конденсаторное масло, керосин, кремнийорганическая жидкость). Корпус мер одновременно служит электростатическим экраном и совместно с дополнительными радиаторами эффективно рассеивает мощность нагрузки.

- ♦ Класс точности (нестабильность за год): 0,02 или 0,05.
- Номинальное значение сопротивления: 0,0001 Ом.
- \bullet TKC α , 1*10⁻⁶ 1/°C: \pm 10; \pm 15.
- **♦ Мощность рассеивания, Вт:** номинальная 0,01; максимальная 60; предельная 100.
- $lack Допускаемое отклонение действительного значения сопротивления от номинального при поверке, % не более : <math>\pm 0,02; \pm 0,05.$
- ◆ Погрешность аттестации действительного значения сопротивления, %: на постоянном токе ±0,006.
- ◆ Габаритные размеры: 180х125х140мм. **Macca** 3кг; Выпускаются по ТУ 4225-043-16851585-2013.

Соответствуют ГОСТ 23737-79. Сертифицированы, зарегистрированы

в Госреестре средств измерений за № 61540-15. Документация, сертификаты, свидетель-Разработчик и изготовитель - ЗИП-Научприбор.

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МС3075 1 МОм и 10 МОм

Применение в качестве государственных эталонов, образцовых и рабочих мер в цепях постоянного тока в воздушной среде.

- ♦ Номинальные значения сопротивления 1МОм и 10МОм.
- ◆ Класс точности по ГОСТ 8.401 0,01.
- ◆ Нестабильность сопротивления за 1 год 100ppm (для рабочих эталонов).
- ♦ Максимальное напряжение 500В для 1МОм, 1000В для 10МОм.
- **◆ Габариты** 119х94х65мм, масса 0,6кг.

Внесены в спецреестр Госреестра средств измерений.

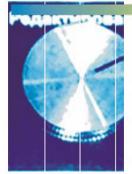
Изготовитель модулей - ЗИП-Научприбор.

<u>МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ</u> универсальные <u>МС3061</u>

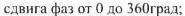
Назначение: государственные эталоны, образцовые и рабочие меры в цепях постоянного и переменного тока.

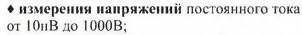
- ♦ Номинальные сопротивления любые от 1 до 100000 Ом.
- ♦ Нестабильность сопротивления за 1 год до 0,0001%.
- ♦ Постоянная времени не более, с; $4x10^{-8}$ для 1 и 10^4 Ом; $1,5x10^8$ для 10 Ом; $5x10^{-9}$ для 10^2 , $1x10^{-8}$ для 10^3 Ом; $2x10^{-7}$ для 10^5 Ом.

Более подробные характеристики представлены на


Выпускаются по ТУ 4225-033-16851585-2003, соответствуют 1 ОСТ 23737-79.

Свидетельство об утверждении типа средств измерений RU.C.34.018.В №58717. Разработчик и изготовитель - ЗИП-Научприбор.




ход

КОМПАРАТОР-КАЛИБРАТОР УНИВЕРСАЛЬНЫЙ КМ300 и его модификации

Предназначен для:

- ♦ воспроизведения напряжения постоянного тока от 10нВ до 1000В;
- ♦ воспроизведения напряжения переменного тока от 1мВ до 700В частотой 10 1000Гц;
- ♦ воспроизведения силы постоянного тока от 0,1нА до 50А;
- ♦ воспроизведения силы переменного тока от 10мкА до 50А частотой 10 1000Гц;
- ♦ воспроизведения мощности постоянного и переменного тока от 1мВт до 10кВт и угла

- ◆ компарирования напряжений постоянного тока от 10нВ до 10В;
- **♦ компарирования сопротивлений** на постоянном токе от 0,0001 Ом до 10 МОм.

Составные изделия компаратора:

- компаратор-калибратор КМ300К,
- усилитель напряжения КМ300Н,
- преобразователь напряжение-ток КМ300Т,
- калибратор постоянных напряжений и токов КМ300С,
- компаратор-калибратор КМ300Р
- ◆ Интерфейсы USB-2,0 RS-232 и RS-485.

♦ Особенности: нижняя температурная зависимость погрешности от нелинейности (не более ±0,00005/°C) вследствие применения операционных индуктивных делителей. Заменяемая техника: P3003, P3003M, P3017, P3015, П327, У358, МП3001, П320, П321, В1-12, У300 (кроме пределов свыше 50A).

• Погрешность компарирования напряжения постоянного тока (нелинейность):

Предел, Ип	Предел допускаемой основной погрешности, ± (% от U+% от Uп)
	1 год, (Тк±1) °С
«10V»	0,0001 + 0,00001
«IV»	0,0001 + 0,00001
«100mV»	0,0002 + 0,00004

• Погрешность измерения напряжения постоянного тока.

Предел, Ип	Предел допускаемой основной погрешности, \pm (% от U+% от Uп) 1)					
	24 часа, (Тк±1)°С	3 месяца, (Тк±1)°С	1 год, (Тк±1)°С	1 год, (Тк±5)°С		
«100mV»	0,0005+0,00004	0,0009+0,00004	0,0011+0,00004	0,0013+0,00004		
«1V»	0,00025+0,000015	0,00065+0,000015	0,00085+0,000015	0,001+0,000015		
«10V»	0.0001 + 0.00001	0,0005+0.00001	0,0007+0,00001	0,00085+0,00001		
«100V» ²⁾	0,001+0,0005	0,0015+0,0005	0,0025+0,0005	0,0035+0,001		
«1000V» ²⁾	0,0015+0,0005	0,0025+0,0005	0.003+0.0005	0,004+0,001		

• Погрешность воспроизведения напряжения постоянного тока.

ſ	Предел, Uп	Предел допускаемой основной погрешности, \pm (% от U+% от Uп) 1)						
ı		24 часа, (Тк±1)°С	3 месяца, (Тк±1)°С	1 год, (Тк±1)°С	1 год, (Тк±5)°С			
ĺ	«100mV»	0,0005+0,00004	0,0009+0,00004	0,0011+0,00004	0,0013+0,00004			
ĺ	«1V»	0,00025+0,000015	0,00065+0,000015	0,00085+0,000015	0,001+0.000015			
	«10V»	0,0001+0,00001	0,0005+0,00001	0,0007+0,00001	0,00085+0,00001			
	«100V» ²⁾	0,001+0,0005	0,0015+0,0005	0,0025+0,0005	0,0035+0,001			
	«1000V» 2)	0,0015+0,0005	0.0025 + 0.0005	0,003+0,0005	0,004+0,001			

♦ Предел абсолютной основной погрешности угла сдвига фаз между сигналами в каналах напряжения и тока

Частотный диапазон,	Диапазон значений	Предел абсолютной основной
Гц	(разрешающая способность), град	погрешности $\Delta \phi$ за 1 год, град
45 - 55	от минус 180 до плюс 180 (0,01)	0,1
55 - 1000		0,1+0,002*(f-55)

• Погрешность компарирования сопротивлений:

		Устапавливаемый	Мощность	Предел	Предел допускае-
	резистор, Rx	ток, А	рассенвания	компари-	мой погрешности
Ом	OM	(напряжение, В)	на резисторах	рования	компарирования
			мВт		%, не более
0,001	0,0001	10	10	100mV	0,005
		3	1		0.015
		10	100		0,0006
		7	50		0,00076
0,001	0,001	5	25	100mV	0,001
		3	9		0,0015
		1	1		0,004
		10	1000		0,00024
		7	500		0,00026
0,01	0,01	5	250		0,00028
		3	90	100mV	0,00033
		1	10		0,0006
		0,5	2,5		0,001
		3	900	1V	0,00013
		1	100		0,00024
		0,7	50		0,00026
0,1	0,1	0,5	25	100mV	0,00028
-,-		0,3	9		0,00033
		0,1	1		0,0006
		1	1000		0,0001
		0,7	500	IV	0,00011
	1	0,5	250		0,00012
1		0,3	90		0,00013
	'	0,1	10		0,00013
		0,07	5	100mV	0,00024
		0,01	0,1	TOOMY	0,00020
		0,1	100		0,0001
			50		
10	10	0.07	25	1V	0,00011
10	10	0,05	9	1 V	0,00012
		0,03		100	0,00013
		0,01	10	100mV	0,00024
		0,01	10	137	0,0001
100	100	0,007	5	1V	0,00011
100	100	0,005	3	100 %	0,00012
		0,001	0,1	100mV	0,00024
1.000	1 000	0,001	1	1V	0,00011
1 000	1 000	(2)	1	4/11/	0,00011
	10	(10)	25	10V	0,00012
10 000	10 000	(20)	10	10V	0,00011
		(10)	3		0,00012
100 000	100 000	(20)	1	10V	0,00011
10 000		(10)	0,9		0,00013
10 000	1 000 000	(10)	0,1	10V	0,0011
10 000	10 000 000	(10)	0,01		0,01

Выход

• Погрешность воспроизведения напряжения переменного тока.

Предел, Ип	Частотный	Предел допускаемой основной погрешности				
(диапазон U)	диапазон, Гц	за 1 год, \pm (% от U+% от Uп) 1)				
		1 год, (Тк±1)°С	1 год, (Тк±5)°С			
«100mV»	10 - 1000	0,02+0,005	0,03+0,005			
«1V»	10 - 1000	0,015+0,005	0,02+0,005			
«10V»	10 - 1000	0,015+0,005	0,02+0,005			
«100V»	10 - 1000	0,025+0,005	0,035+0,005			
«1000V»	10 - 1000	0,03+0,005	0,04+0,005			

• Погрешность и выходные параметры воспроизведения силы постоянного тока.

Предел,		сновной погрешности,	Допустимое	Выходное
lπ	за 1 год, ± (% о	т I + % от Іп)	сопротивление	сопротивление,
	(Tk±1)°C (Tk±5)°C		на нагрузке, Ом	не менее
«lmA»	0,0025+0,0005	0,0035+0,0005	до 2000	1ГОм
«10mA»	0,0025+0,0005	0,0035+0,0005	до 200	100МОм
«100mA»	0,0025+0,0005	0,0035+0,0005	до 20	10МОм
«1A»	0,005+0,001	0,007+0,001	до 1	0,5МОм
«10A»	0,008+0,002	0,012+0,002	до 0,1	20кОм
«50A» 1)	0,035+0,004	0,05+0,004	до 0,02	2кОм

• Предел, дианазон и погрешность установки частоты.

Предел частоты, Гц	Частотный диапазон, Гц	Дискретность, Гц	Погрешность частоты, % не более
1000	10 - 1000	1	0,003

Модификация КМ300К и КМ300Р

КМ300К - базовый, системообразующий прибор, выполняющий следующие функции:

- компарирование напряжения постоянного тока от 10нВ до 10В;
- измерение напряжения постоянного тока от 10нВ до 1000В;
- **воспроизведение напряжения** постоянного и переменного тока в диапазоне до 10нВ с частотой 10 1000Гц.

КМ300Р соответствует характеристикам КМ300К для компарирования,

измерения и воспроизведения по постоянному току без характеристик по переменному току.

Модификация КМ300КН

- компарирование напряжения постоянного тока от 10нВ до 10В;
- **измерение напряжения** постоянного тока в диапазоне от 10нВ до 1000В;
- воспроизведение напряжения постоянного тока от 10нВ до 1000В;
- воспроизведение напряжения переменного тока от 1мВ до 700В с частотой 10 1000Гц.

Модификация КМ300КТ км300к

- компарирование и воспроизведение напряжения постоянного тока от 10нВ до 10В;
- измерение напряжения постоянного тока в диапазоне от 10нB до 1000B;
- воспроизведение напряжения переменного тока от 10мВ до 10В частотой 10 1000Гц;
- воспроизведение силы постоянного тока от 0,1нA до 50A, силы переменного тока от 10мкA до 50A частотой 10 1000Гц.

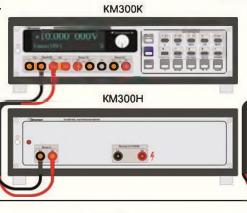
ипаритор-киливра

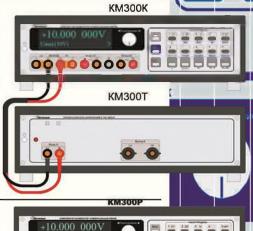
паратор-калибра

БРАЗОВАТЕЛЬ НАПР

0000

+10.00


Модификация КМ300КНТ


- компарирование напряжения постоянного тока от 10нВ до 10В;
- **измерение напряжения** постоянного тока в диапазоне от 10нВ до 1000В;
- **воспроизведение напряжения** постоянного тока от 10нВ до 1000В;
- **воспроизведение напряжения** переменного тока от 1мВ до 700В частотой 10 1000Гц;
- воспроизведение силы постоянного тока от 0,1нА до 50А;
- воспроизведение силы переменного тока от 10мкA до 50A частотой 10 1000Гц.

Модификация КМ300КН совместно с КМ300КТ. Калибратор мощности и компаратор сопротивлений

Дополнительно к характеристикам КМ300КН и КМ300КТ:

- воспроизведение мощности постоянного и переменного тока от 1мВт до 10кВт и угла сдвига фаз от 0 до 360град.
- компарирование сопротивлений на постоянном токе от 0,0001 Ом до 10Мом (КМ300К+КМ300КТ).

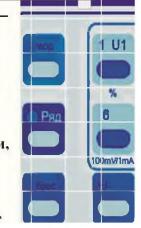
000000000

KM300K

КМ300Н

KM300T

00000


Компаратор сопротивлений. Модификация КМ300Р совместно с КМ300С.

- компарирование сопротивлений на постоянном токе от 0,0001 Ом до 10 Мом;
- компарирование напряжений постоянного тока от 10нВ до 10В;
- воспроизведение напряжений постоянного тока от 10нВ до 10В;
- пределы воспроизводимых токов, A: 0,001; 0,01; 0,1; 1; 10 с множителями : 0; 0,3; 0,5; 0,7; 1.

Для всех модификаций КМ300

- ◆ **Нормальные условия применения:** Температура окружающего воздуха Т=(Tк±1)°С, где Тк температура калибровки (при выпуске Тк=(23±1)°С).
- Относительная влажность 30-80%. Атмосферное давление 84-106кПа(630-795мм.рт.ст.).
- ◆ Рабочие условия применения соответствуют ГОСТ 22261 группа1. Температура окружающего воздуха от 15 до 30°С. Относительная влажность до 80% при температуре 25°С.
- ◆ Мощность, потребляемая приборами от сети питания при нормальном напряжении, не более: для КМ300К 44В·А, для КМ300Т 250В·А, для КМ300Н 88В·А. При заказе указывать наименование и модификацию, например: Компаратор-калибратор универсальный КМ300КТ. Выпускаются по ТУ 4225-029-16851585-2008.

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация,

00

ОММЕТР ЦИФРОВОЙ СО 3001 класса точности 0,002 Предназначен для измерения электрического сопротивления по постоянному току с высокой точностью. ◆ Обеспечивает прием управляющих и передачу измеренных значений сопротивления по интерфейсам RS 232, USB, LAN.

♦ Диапазон измеряемых сопротивлений от 1 Ом до 1 ГОм.

◆ Пределы допускаемого значения относительной основной погрешности за 1 год с учетом аддитивной и мультипликативной составляющих в расширенной до 120% области измерений во всех диапазонах измерения сопротивления приведены в таблице.

Пределы измерения	Основная погрешность,
сопротивления	% от Rизм+ % от Rп
1 Ом	$\pm(0.01+0.001)$
10 Om	
100 Ом	
1 кОм	$\pm(0.0019 + 0.0001)$
10 кОм	
100 кОм	
1 МОм	$\pm (0.005 + 0.0001)$
10 МОм	$\pm (0.01 + 0.001)$
100 МОм	$\pm(0.1+0.01)$
1 ГОм	$\pm(0.5+0.1)$

Примечание:

Предел допускаемой основной погрешности нормируется от 10% Rn до Rn.

• Максимальное индицируемое цифровое значение:

"12000000" (7,5 десятичных разрядов).

◆ Падение напряжения на измеряемом сопротивлении должно быть не более 10В.

◆ Максимальный измерительный ток не должен превышать 100мA.

◆ **Нелинейность преобразования**: 0,0002% от Rизм + 0,0001% от Rп, где Rизм - измеряемое сопротивление, Rп - конечное значение сопротивления на данном пределе.

◆ Дополнительная погрешность, вызванная изменением температуры окружающего воздуха, на каждые 10 °C от нормальной в переделах рабочих условий - не более основной погрешности, нормируемой за 1 год при температуре калибровки 23±1 °C.

Электрическое сопротивление изоляции между соединенными вместе корпусом, цепями питания и входными клеммами не менее 10 8 Ом.

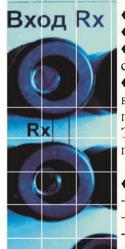
♦ Рабочие условия эксплуатации:

- температура окружающего воздуха от 10 до 35.

- атмосферное давление от 84 до 106 кПа (630 - 795 мм рт.ст.).

- относительная влажность от 30% до 80%.

- напряжение питающей сети 220 22В, частотой от 47 до 53Гц.


Мощность потребления не более 50ВА.

• Время прогрева омметра не менее 1ч.

◆ Непрерывная работа не менее 24ч с перерывом до повторного включения 1ч.

◆ Габаритные размеры не более (ШхВхГ) 300х120х310мм. Масса не более 5кг.

Выпускаются по ТУ 4221-049-16851585-2016. Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены

втонуль

κл

ЦИФРОВЫЕ ЛАБОРАТОРНЫЕ ПРИБОРЫ СЕРИИ 3010

действующего значения по постоянному и переменному току класса точности 0,1

Приборы серии 3010 заменяют приборы серии Дхххх с зеркальной шкалой. В состав серии входят исполнения:

- ◆ CA3010/1 амперметр с пределами измерения по постоянному и переменному току, мА: 5 10 20 50.
- ◆ CA3010/2 амперметр с пределами измерения по постоянному и переменному току, мА: 50 100 200 500.
- ◆ CA3010/3 амперметр с пределами измерения по постоянному и переменному току, А: 1 2,5 5 10.
- ◆ CB3010/1 вольтметр с пределами измерения по постоянному и переменному напряжению, В: 7,5 15 30 60.
- ◆ CB3010/2 вольтметр с пределами измеренияпо постоянному и переменному напряжению, В: 75 150 300 600.
- ◆ **СР3010/1 ваттметр** с пределами измерения по постоянному и переменному **току,** мА: 50 100 200 500; по постоянному и переменному напряжению, В: 30 75 150 300 450 600.
- ◆ СР3010/2 ваттметр с пределами измерения по постоянному и переменному току, А: 1 2,5 5 10; по постоянному и переменному напряжению, В: 30 75 150 300 450 600.
- ◆ СМ3010 многофункциональный цифровой ваттметр
 - с пределами измерения по постоянному и переменному **току**, A: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10;
 - с пределами измерения **напряжения** по постоянному току, В: 1-3-7,5-15-30-75-150-300-450-700-1000; по переменному току, В: 1-3-7,5-15-30-75-150-300-450-700;
 - с пределами измерения мощности соответственно Un*In;
 - с пределами измерения **частоты** от 40 до 5000Γ ц с относительной погрешностью измерения $\pm 0,003\%$.

Каждое исполнение приборов серии 3010 имеет три модификации:

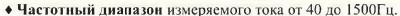
- 000 без интерфейса; 232 с интерфейсом RS232; 485 с интерфейсом RS485. Прибор **CM3010** во всех трех модификациях имеет дополнительно интерфейс USB. Примеры записи: CA3010/3-000, CB3010/1-232, CM3010-485.
- ◆ Потребляемая мощность для CA3010 и CB3010 не более 3Вт, для CP3010 и CM3010 не более 5Вт. Габаритные размеры для CA3010 и CB3010 225х85х200мм, для CP3010 225х100х200мм, для CM3010 225х100х205мм. Масса не более 1кг.

Питание осуществляется постоянным напряжением от 9 до 18В или через адаптер от сети переменного тока напряжением (220±22)В частотой (50±1)Гц.

ЦИФРОВЫЕ АМПЕРМЕТРЫ САЗ010

Предназначены для точных измерений постоянного тока и действующих значений переменного тока, а также для поверки приборов постоянного и переменного тока класса точности 0,3 и ниже.

- Пределы основной приведенной погрешности
- ±0,1% от предела измерения.


SENEND

CM3010

ОЛЬТМЕТР CB3010/2

Метрология. Приборы электроизмерительные прецизионные (эталонные)

- ♦ Максимальное падение напряжения на входе не более 300мВ.
- ♦ Входная емкость не более 100пФ.

Выпускаются по ТУ 4221-015-16851585-2004.

ЦИФРОВЫЕ ВОЛЬТМЕТРЫ СВЗ010

Предназначены для точных измерений постоянного напряжения, действующих значений переменного напряжения, а также для поверки приборов постоянного и переменного тока класса точности 0,3 и ниже.

- Пределы основной приведенной погрешности
- ±0,1% от предела измерения.
- ◆ **Частотный** д**ианазон** измеряемого напряжения от 40 до 1500Гц.
- **♦ Входное сопротивление** вольтметров не менее 100кОм для СВ3010/1, не менее 1МОм для СВ3010/2.
- ◆ Входная емкость не более 100пФ.
 Выпускаются по ТУ 4221-015-16851585-2004...

ЦИФРОВЫЕ ВАТТМЕТРЫ СРЗ010

Предназначены для измерений активной мощности в цепях постоянного тока и в однофазных цепях переменного тока, а также для поверки ваттметров класса точности 0,3 и ниже.

◆ Пределы основной приведенной погрешности - ±0,1% от конечного значения диапазона измерения мощности.

- ◆ **Частотный диапазон** измерения мощности на переменном токе от 40 до 1000 Гц.
- Падение напряжения на токовом входе не более 300мВ.
- **♦ Входное сопротивление** входа напряжения не менее 1МОм, **входная емкость** не более 100пФ.

Выпускаются по ТУ 4221-017-16851585-2005.

МНОГОФУНКЦИОНАЛЬНЫЕ ЦИФРОВЫЕ ВАТТМЕТРЫ СМ3010

Имеют совокупные характеристики приборов серии 3010 и расширенные характеристики.

Предназначены для измерений:

- активной мощности;
- тока:
- напряжения;
- частоты

в цепях постоянного тока и в однофазных цепях переменного тока, а также для поверки ваттметров, амперметров, вольтметров класса точности 0,3 и ниже, частотомеров класса 0,01 и ниже.

- ◆ Основная приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%;
- ◆ Основная приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%;
- ◆ Основная приведенная погрешность измерения мощности на постоянном и переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%;
- ♦ Относительная погрешность измерения частоты в диапазоне от 40 до 5000Γ ц $\pm 0,003\%$. Выпускаются по ТУ 4221-047-16851585-2014.

300

НАБОР ОДНОЗНАЧНЫХ МЕР ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТЕРМОСТАТИРОВАННЫЙ

MC3050T (Transportable Resistance Standard)

Изготовлен на базе особостабильных прецизионных однозначных мер электрического напряжения (ОМЭС) МС3050, имеющих высочайшие метрологические характеристики и использующихся в промышленно развитых странах, в том числе в национальных эталонах Ома, а также всех метрологических и научных центрах России.

- ◆ Количество ОМЭС в одном корпусе от 1 до 4шт.
- **◆ Номинальные сопротивления ОМЭС** любые в интервале (0,1 100000) Ом.
- **◆ Класс точности** 0,002; 0,001; 0,0005 (0,0005 с присвоением разряда).
- ◆ Нестабильность сопротивления:
- за 24 часа 0,005 ppm; за первые 6 мес. 1 ppm;
- за 12 последующих месяцев 0,5 ppm (отбором до 0,2 ppm).
- ◆ Допускаемое отклонение от номинального сопротивления при выпуске ±0,005%.
- ◆ Погрешность аттестации (при аттестации во ВНИИМ им. Д.И.Менделеева): 0,1 Ом 0,1 ppm; 1 Ом 0,05 ppm; 10-100000 Ом 0,2 ppm.
- ◆ Рабочие условия применения 15-25°C.
- ◆ Изменение сопротивления в рабочих условиях применения до ±0,5 ppm и до ±0,005 ppm при температуре 20±1°C.
- ◆ Температура термостатирования 32°C, возможна любая в диапазоне от 30 до 36°C.
- ♦ Мощность рассеяния: номинальная 0,05Вт; максимальная 0,1Вт; предельная 0,5Вт.
- ◆ **Характеристики термодатчика:** номинальное сопротивление 100 Ом, ТКС 0,391%/°С.
- ♦ Время выхода термостата на режим не более 1ч. Термо ЭДС не более 0,5мкВ.
- Время непрерывной работы не ограничено.
- ◆ Рабочее напряжение 220B±10%.
- ◆ Габаритные размеры (ВхШхГ) 180х351х245мм. Масса не более 8кг.

Набор мер герметизирован, что позволяет избежать влияния изменения влажности и атмосферного давления. Исключается необходимость эксплуатации громоздких термостатов. На графике изображена зависимость ТКС меры МС3050Т и ТКС типичной меры сопротивления 100 Ом МС3050.

В качестве опции имеется вариант набора мер с прилагаемым аккумулятором (время работы не менее 2ч) и (или) от питания бортовой сети автомобиля.

Выпускаются по ТУ 4225-031-16851585-2009. Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и изготовитель ЗИП-Научприбор.

КОМПЛЕКТ ТЕРМОСТАТИРОВАННЫХ ОМЭС МК300 с коммутатором

Предназначен для использования в качестве комплекта однозначных мер электрического сопротивления **(ОМЭС)** в цепях постоянного тока при проведении поверочных, калибровочных и исследовательских работ. Внутри корпуса в термостатированном блоке расположен набор ОМЭС. Меры коммутируются с помощью переключателя. На лицевой стороне корпуса расположены индикаторы работы термостата.

◆ Максимальное число коммутируемых ОМЭС - 9.

- ◆ Диапазон сопротивлений ОМЭС от 10-3 до 105 Ом. (номинальные значения любые).
- ◆ Классы точности ОМЭС 0,001 или 0,002.
- Максимально допустимые значения мощности рассеивания:
- в диапазоне сопротивлений от 10-3 до 10 Ом 1Вт;
- в диапазоне сопротивлений свыше 10 до 105 Ом 0,1Вт.
- ◆ Дианазон рабочих температур от 18 до 22°C.
- ♦ Время выхода на рабочий режим 1час.
- **♦ Точность поддержания температуры** в термостатированном блоке ±0.1°C.
- ◆ Питание комплекта ОМЭС 220B±10%, 50Гц±1%.
- ◆ Потребляемая мощность: до выхода на режим термостатирования не более 45BA, после выхода на режим не более 5BA.
- ◆ Габаритные размеры не более 250x250x200мм, масса не более 5кг.

Выпускаются по ТУ 4225-019-16851595-2010. **Сертифицированы, зарегистрированы в Госреестре** средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и изготовитель ЗИП-Научприбор.

ИМИТАТОРЫ ТЕРМОПРЕОБРАЗОВАТЕЛЕЙ МКЗ002

Представляют собой коммутируемые двухканальные наборы для поверки (калибровки) каналов измерения температуры (измерения разности температур), содержащие до 16 однозначных мер сопротивления.

Воспроизводят сопротивления платиновых и медных ТС в любых температурных точках по ГОСТ 6651-09 для платиновых (α =0,00391°C-1 и α =0,00385°C-1) и медных (α =0,00428°C-1 и α =0,00426°C-1) или по индивидуальным НСХ.

- ♦ Количество воспроизводимых температурных точек до 16.
- ◆ Количество каналов воспроизведения температур 2.
- **Номинальные сопротивления** при 0°С любые в интервале от 10 Ом до 12 кОм.
- **◆ Погрешность** воспроизведения температур:
- типичная 0,012°C, индивидуальная 0,005°C.
- **◆Погрешность** воспроизведения разности температур для разности в 1°C не более 0,011°C.
- ♦ Стабильность воспроизведения температурных точек за год:
- типичная 0,005°C, индивидуальная 0,001°C.
- Габаритные размеры 240x200x115мм. ◆ Macca не более 1,6кг.

При заказе Заказчик заявляет любые температурные точки для всех типов платиновых и медных сопротивлений по ГОСТ 6651-09. Выпускаются по ТУ 4225-027-05766445-99. Сертифицированы,

зарегистрированы в Госреестре средств измерений. Документация, сертификаты,

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ постоянного тока МНОГОЗНАЧНЫЕ МСЗ070М

класса точности до 0,001

Многозначные меры электрического сопротивления (ММЭС) предназначены для воспроизведения электрического сопротивления в цепях постоянного тока. Заменяют ранее выпускавшиеся ММЭС Р3026, МС3070. Имеют 2 модификации - MC3070M-1 и MC3070M-2

Основное отличие и особенность ММЭС МС3070М-2 наличие декады 10х0,001 Ом и диапазон (1-11 111,11) Ом при сохранении всех метрологических характеристик MC3070M-1.

- ◆ Дианазон устанавливаемых сопротивлений для МС3070М-1: от 0,01 до 111 111,1 Ом с дискретностью 0,01 Ом, для МС3070М-2 от 1 до 11 111,11 Ом с дискретностью 0,001 Ом.
- ◆ Классы точности 0,001/1,5*10⁻⁶; 0,002/1,5*10⁻⁶; 0,005/1,5*10⁻⁶.
- ♦ Стабильность сопротивления за год соответствует классу точности.
- ◆ Состав декад MC3070M-1, Ом: 1 декада 10x10000; 2 декада 10x1000;
- 3 декада 10x100, 4 декада 10x10, 5 декада 10x1, 6 декада 10x0,1, 7 декада 10x0,01.
- ◆ Состав декад МС3070М-2, Ом: 1 декада 10x1000; 2 декада 10x100; 3 декада 10x10, 4 декада - 10x1, 5 декада - 10x0,1, 6 декада - 10x0,01, 7 декада - 10x0,001.
- Начальное сопротивление для MC3070M-1 не более 0,01 Ом (1 Ом для MC3070M-2).
- Вариация начального сопротивления всех включенных декад для МС3070М-1 не более 0,001 Ом (0,0005 Ом для МС3070М-2).

• Нормальные и рабочие условия применения.

D	12		· · ·			
Влияющая величина	Значение влияющей величины для классов точност				очности	
	Нормальные условия		Рабоч	ие услові	RN	
	0,001	0,002	0,005	100,0	0,002	0,005
Температура окружающего воздуха,°С	20±0,2	20±	0,5	20±1	20±2	20±5
Относительная влажность воздуха, %	от 25 до 80		от 25 до 80 в рабоче		абочем	
	диапазоне те		воне темп	ератур		
Атмосферное давление, кПа (мм.рт.ст)		84 -	106,7 (63)	0 - 800)		

• Значения номинальной и максимальной мощностей рассеивания на одну ступень.

Г	Исполнение Класс		Мощность р	ассеивания на	Мощность рассеивания на		
ı	ММЭС	точности	одну ступень		одну ступень одну ступень		тупень
ı			1-5 декады МС3070М-1 и		6-7 декады М	С3070М-1 и	
ı			1-4,7 декады N	ИС3070М-2 , Вт	5-6 декады М	IC3070M-2, BT	
				максимальная	номинальная	максимальная	
п	MC3070M-1.1	$0.001/1.5*10^{-6}$	0,01	0,03			
L	MC3070M-2.1						
П	MC3070M-1.2	$0,002/1,5*10^{-6}$	0,01	0,1	0,02	0,2	
ı	MC3070M-2.2						
Γ	MC3070M-1.3	$0,005/1,5*10^{-6}$	0,01	0,1			
L	MC3070M-2.3						

- ◆ Электрическое сопротивление изоляции между корпусом и электрическими цепями не менее 2*1010 Ом. Электрическая прочность изоляции - 1,5 кВ.
- ◆ Габаритные размеры не более 485х250х240. Масса не более 11кг.

Выпускаются по ТУ4225-041-16851585-2011. Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены

Метрология. Приборы прецизнонные (эталонные) на основе мер сопротивления.

МЕРЫ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МНОГОЗНАЧНЫЕ МСЗ071 (цифровой магазин)

Предназначены для воспроизведения электрического сопротивления в цепях постоянного тока, а также в качестве имитаторов термосопротивлений для исполнений 11; 12; 13; 21; 22; 23. **Класс точности** от 0,2 до 0,001. **Модификаций - 5. Исполнений -** 15.

Перекрываемый дианазон воспроизведения сопротивлений от 0,02 Ом до 100МОм.

Исполнения Класс		Диапазон	Минималь-	Мощность рассеивания, мВт		
	точности	сопротивлений	ный шаг	номинальная	максимальная	
MC3071-11	0,001		0,1 Om-10 kOm 0,001		25	
MC3071-12	0,002	0,1 Ом-10 кОм		10	50	
MC3071-13	0,005					
MC3071-21	0,001				25	
MC3071-22	0,02	0,02 Ом-100 кОм	0,01	10	50	
MC3071-23	0,005					
MC3071-33	0,005		0,1	10		
MC3071-34	0,01	1,2 Ом-1 МОм		25	50	
MC3071-35	0,02					
MC3071-45	0,02					
MC3071-46	0.05	2,4 Ом-10 МОм	1	25	50	
MC3071-47	0,1					
	0,05					
MC3071-57	0,1	10 Ом-100 МОм	10	25	50	
MC3071-58	0,2					
	MC3071-11 MC3071-12 MC3071-21 MC3071-21 MC3071-22 MC3071-23 MC3071-33 MC3071-34 MC3071-35 MC3071-46 MC3071-47 MC3071-56 MC3071-56	МСЗ071-11	MC3071-11 0,001 MC3071-12 0,002 0,1 Oм-10 кОм MC3071-13 0,005 MC3071-21 0,001 MC3071-22 0,02 0,02 Oм-100 кОм MC3071-23 0,005 MC3071-33 0,005 MC3071-34 0,01 1,2 Oм-1 МОм MC3071-35 0,02 MC3071-45 0,02 MC3071-46 0,05 MC3071-47 0,1 MC3071-56 0,05 MC3071-56 0,05 MC3071-57 0,1 10 Oм-100 МОм	МСЗ071-11 0,001 О,002 О,1 Ом-10 кОм 0,001 МСЗ071-12 0,002 0,1 Ом-10 кОм 0,001 МСЗ071-21 0,001 0,02 Ом-100 кОм 0,01 МСЗ071-22 0,02 0,02 Ом-100 кОм 0,01 МСЗ071-33 0,005 0,005 0,02 МСЗ071-34 0,01 1,2 Ом-1 МОм 0,1 МСЗ071-45 0,02 0,02 0,02 МСЗ071-46 0,05 2,4 Ом-10 МОм 1 МСЗ071-56 0,05 0,05 0,05 МСЗ071-57 0,1 10 Ом-100 МОм 10	МСЗ071-11 0,001 ный шаг номинальная МСЗ071-12 0,002 0,1 Ом-10 кОм 0,001 10 МСЗ071-13 0,005 0,001 10 МСЗ071-21 0,001 0,02 0,02 Ом-100 кОм 0,01 10 МСЗ071-23 0,005 0,005 10 10 МСЗ071-34 0,01 1,2 Ом-1 МОм 0,1 25 МСЗ071-45 0,02 2,4 Ом-10 МОм 1 25 МСЗ071-46 0,05 2,4 Ом-10 МОм 1 25 МСЗ071-56 0,05 10 Ом-100 МОм 10 25	

Пределы абсолютной основной погрешности имитации датчиков температуры для исполнений 11; 21 в компенсированном режиме от ПК (для исполнений 12; 13; 22; 23 - по заказу):

Время смены значения сопротивления < 1 с. Схема подключения - двух/четырехзажимная. Потребляемая мощность < 15ВА. Габаритные размеры (ГхШхВ) 400х365х215мм. Масса < 11кг.

Автоматическая компенсация

	Платиновые датчики температуры (Pt)							
I	Температура,	Знач	ения пре	делов по	грешност	и, °С		
۱		Pt10	Pt50	Pt100	Pt500	Pt1000		
۱	-200,000 +0,000	± 0.045	$\pm 0,012$	± 0.0065	± 0.00	14		
ı	+0,001 +200,000	± 0.05	±0,015	±0,01	±0,00	6		
j	+200,001 +500,000	±0.06	±0,02	±0.015	±0,01			
1	+500,001 +850,000	±0,07	±0,03	± 0.02	±0,01	5		
۱	Медные датчики температуры (Си)							
1	Температура,	Знач	ения пре	делов по	грешност	и.℃		
1		Cu10	Cu50	Cu100	Cu500	Cu1000		
	-200,000 +0,000	±0,04	±0,01	± 0.006	±0,0035	±0,003		
1	+0,001 +200,000	±0,04	± 0.012	± 0.008	±0.0055	± 0.005		
ı	Никелевые с	датчики	и темпер	ратуры (.	Ni)			
1	Температура,	Знач	ения пре	делов по	грешност	и, °C		
۱		Ni10	Ni50	Ni100	Ni500	Ni1000		
	-200,000 +0,000	± 0.03			±0.00)25		
Ì	+0,001 +200,000	±0,025 ±0,007		$\pm 0,005$	±0,003			
1	+200,001 +500,000	±0,022			±0,00)35		

отклонения сопротивления от номинала. **Автоматический расчет** и отображение воспроизводимого сопротивления, допустимых отклонений, входного тока и напряжения. **Имитация датчиков** температуры всех типов с любой НСХ. **Отсутствие вариации** начального сопротивления. **Создание и сохранение** последовательности сопротивлений для автоматизации измерений. **Интерфейсы RS232**, USB. **Открытый протокол обмена**.

МЕРЫ МНОГОЗНАЧНЫЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МСЗ057 и МСЗ057.1

(магазины сопротивлений класса до 0,005)

Предназначены для применения при проведении поверочных и калибровочных работ в цепях постоянного тока, а также исследовательских работ в цепях постоянного и переменного тока. Меры выполнены в пластмассовом корпусе с внутренним электростатическим экраном. На верхней панели корпуса размещены ручки восьмидекадных переключателей и зажимы для подключения меры и электростатического экрана.

1. Диапазон устанавливаемых сопротивлений:

- для MC3057 от 0,001 до 122 222,221 Ом.
- для MC3057.1 от 0,01 до 1 222 222,21 Oм.
- 2. Классы точности обенх модификаций 0,005/1,5*10-7 и 0,01/1,5*10-6.
- 3. Число декад 8.
- 4. Номинальное значение сопротивления ступени:
- младшей декады: MC3057 0,001 Ом;
 - MC3057.1 0,01 Ом.
- старшей декады: MC3057 10 кОм.
 - МС3057.1 100 кОм.

5. Среднее значение начального сопротивления всех декад не более:

- MC3057 на клемме 100 кОм 0,02 Ом,
 - на клемме 1 Oм 0,007 Oм.
- MC3057.1 на клемме 1 MOм 0,02 Oм,
 - на клемме 1 Oм 0,005 Oм.
- 6. Вариация начального сопротивления обеих модификаций, не более 0,0005 Ом.
- 7. Максимальная мощность рассеивания на одну ступень составляет, Вт:
- для MC3057 0,001 Ом 0,5;
 - -0.01 Om 1;
 - 0.1 Om 1:
 - -1 Om -0.5;
 - 10 Ом 10 кОм 0,25;
- для MC3057.1 0,01 Om 1;
 - 0,1 Om 1;
 - 1 Ом 0,5;
 - 10 OM 100 KOM 0,25;

7. Рабочие условия применения:

- температура окружающего воздуха от +15 до +25°C,
- относительная влажность воздуха от 25 до 80% в рабочем диапазоне температур.
- 8. Габаритные размеры корпуса обеих модификаций:

300х200х150мм. Масса не более 4кг.

Выпускаются по ТУ 4225-048-16851595-2016.

Технические решения защищены патентами РФ №2262761, 2369877, 2370845, 2591590 **Сертифицированы, зарегистрированы в Госреестре** средств измерений. Документация,

Метрология. Приборы прецизионные (эталопные) на основе мер сопротивления.

МЕРЫ МНОГОЗНАЧНЫЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МСЗ055 (магазин сопротивлений) класса точности 0,02 и 0,05

Предназначены для применения при проведении поверочных и калибровочных работ в цепях постоянного тока, а также исследовательских работ в цепях постоянного и переменного тока.

- 1. Диапазон устанавливаемых сопротивлений от 0,01 до 1,22222221 МОм.
- 2. Классы точности модификаций 0,02/2*10-7 и 0,05/5*10-7.
 - 3. Число декад 8.
 - 4. Номинальное значение сопротивления ступени:
 - младшей декады 0,01 Ом, старшей декады 100кОм.
 - 5. Среднее значение начального сопротивления:
 - всех декад не более 0,04 Ом,
 - на клемме 1 Ом не более 0,01 Ом.
 - 6. Максимальная мощность рассеивания на одну ступень составляет:
 - 0,01 Ом 0,1Вт (Imax 3,2A),
 - 0,1 Ом 1Вт (Imax 3,2A),
 - 1 Ом 100кОм 0,25Bт (Imax 0,5A 0,002A).
 - 7. **Рабочие условия** применения: температура окружающего воздуха от 10до 40°C, относительная влажность воздуха от 25 до 80% в рабочем диапазоне температур.

8. **Габаритные размеры корпуса** 200х150х90мм. **Масса** не более 2кг. **Выпускаются** по ТУ 4225-037-16851585-2009. Технические решения защищены патентами РФ №2262761, 2369877, 2393489

Сертифицированы, зарегистрированы в Госреестре средств измерений.

Документация, сертификаты, свидетельства представлены Разработчик и иготовитель ЗИП-Научприбор.

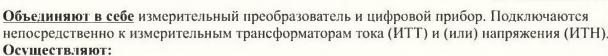
<u>УСТРОЙСТВО ТЕРМОСТАТИРУЮЩЕЕ</u> ВОЗДУШНОЕ (термостат) ТВ-1

Рабочий объем 225л.

Размещаются свободно: MC3071, MC3070M (P3026) по 1шт; X488 - 3шт, P3017 - 9шт., X480 - 12шт., MC3050M, MC3080(M), P3030/P3031 по 20шт., MC3081, P310/P321 по 12шт., MC3055 - 2шт., MC3057 - 2шт.

- ◆ Диапазон воспроизводимых температур 5 ... 50°C.
- **◆ Пределы погрешности поддержання** воспроизводимой температуры ±0,04°С
- **Пределы погрешности стабильности** среднего значения воспроизводимой температуры в месте размещения датчика регулятора температуры ±0,04°C;
- ◆ Градиент температуры в полезном объеме камеры в диапазоне температур от 14,5 до 25,5°C не более 0,2°C.
- ♦ Габариты ШхДхВ не более 820х1060х1760мм. Масса не более 160кг.
- ◆ Программное обеспечение открытый протокол. Предустановленные и пользовательские значения температуры. Интерфейс USB, RS232.
 Подробные характеристики

Аттестация - как испытательное оборудование. **Выпускаются** по ИУСН.344390.001ТУ. Разработчик и изготовитель ЗИП-Научирибор.



ЦИФРОВЫЕ ЩИТОВЫЕ ПРИБОРЫ СЕРИИ 3020

действующего значения класса точности 0,2

Состав верии 3020

- **◆** Амперметр СА3020;
- ◆ Вольтметр СВ3020;
- **♦** Ватгметр СР3020;
- **◆** Варметр СР3020;
- ◆ Частотомер СС3020;
- ◆ Многофункциональные измерительные преобразователи CH3020;
- ◆ Устройства индикации цифровые СЕ3020.

- измерение действующих значений переменного тока и напряжения, активной и реактивной мощности, частоты сети и передачу их значений по интерфейсу RS485;
- установку по интерфейсу значений коэффициентов трансформации ИТТ (Кт) и (или) ИТН (Кн) (кроме частотомера СС3020) и уставок допускаемых значений измеряемых величин (кроме варметра СР3020);
- **индикацию значений** измеряемых величин с учетом установленных Кт и (или) Кн и их размерность;
- **индикацию выхода** измеряемых значений за границы установленных уставок миганием светодиодов "min" или "max", при этом замыкаются контакты соответствующих реле.
- ваттметры, дополнительно, индицируют знак "+" для принимаемой мощности и знак "-" для отдаваемой, а варметры индицируют знак "+" для индуктивной нагрузки и знак "-" для емкостной нагрузки.

Высота цифр - 25мм.

Рекомендации по подключению приборов серии 3020 к компьютеру, форматы сообщений

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и иготовитель ЗИП-Научприбор.

АМПЕРМЕТРЫ САЗ020

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- ◆ Номинальное значение измеряемого тока для Iн=5A; Iн= 2A; Iн=1A (в зависимости от исполнения.
- ♦ Диапазон измеряемых токов (СА3020) от 0,01 Ін до 1,5 Ін.
- Частотный диапазон измеряемого напряжения от 45 до 850Гц.
- ♦ Диапазон установки Кт от 1 до 3000.
- ◆ Пределы допускаемой основной приведенной погрешности измерений не более ±0,2% к номинальному значению измеряемого тока.
- ◆ Питание амперметра осуществляется от сети переменного тока напряжением (85...260)В частотой (45...65)Гц или постоянным напряжением (120...300)В.
- **◆ Потребляемая мощность** не болсе 4BA. **◆ Габаритные** размеры 144x72x120мм. **Масса** не более 0,4Kr.
- Амперметры имеют возможность установки по гальванически

CB3020

CA3020

развязанному интерфейсу RS485 коэффициентов трансформации ИТТ (Кт) в диапазоне от 1 до 30000 и индицируют значение измеряемого тока с учетом установленного коэффициента трансформации ИТТ в амперах или килоамперах.

Кроме функции измерения амперметры реализуют функцию контроля минимального и максимального допустимых значений измеряемого тока. Выход измеряемого тока за установленные значения индицируется световой индикацией на лицевой панели и при этом замыкаются контакты соответствующего реле. Диапазон установки уставок нижнего допускаемого значения измеряемого тока от 0,02 Ін*Кт до 1,48 Ін*Кт. Диапазон установки уставок верхнего допускаемого значения измеряемого тока от 0,03 In*Kт до 1,49 In*Kт.

ВОЛЬТМЕТРЫ СВ3020

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- ◆ Номинальное значение измеряемого напряжения: Uн=100В или 250В.
- ♦ Диапазон измеряемых напряжений от 0,1Uн до 1,5Uн для СВ3020-100В; от 0,1Uн до 1,2Uн для СВ3020-250В.
- ◆ Частотный диапазон измеряемого напряжения от 45 до 850Гц.
- ◆ Диапазон установки Кн от 1 до 3000.
- ◆ Пределы допускаемой основной приведенной погрешности измерений не более ±0,2% к номинальному значению измеряемого напряжения.
- Питание вольтметра осуществляется от сети переменного тока напряжением (85...260)В частотой (45...65) Гц или постоянным напряжением (120...300)В.
- ◆ Потребляемая мощность не более 4BA.

CB3020

◆ Габаритные размеры - 144x72x120мм. Масса не более 0,4Кг.

Вольтметры имеют возможность установки по гальванически развязанному интерфейсу RS485 коэффициентов трансформации ИТН (Кн) в диапазоне от 1 до 30000 и индицируют значение измеряемого напряжения с учетом установленного коэффициента

трансформации ИТН в вольтах или киловольтах.

Кроме функции измерения вольтметр реализует функцию контроля минимального и максимального значений измеряемого напряжения. Выход измеряемого напряжения за установленные значения индицируется световой индикацией на лицевой панели и при этом замыкаются контакты соответствующего реле. Диапазон установки уставок нижнего допускаемого значения измеряемого напряжения от 0,1Uн*Кн до 1,48Uн*Кн (для СВ3020-100) и от 0,11 UН*Кн до 1,18 Uн*Кн (для СВ 3020-250). Диапазон установки уставок верхнего допускаемого значения измеряемого

напряжения от 0,2Uн*Кн до 1,49Uн*Кн (для СВ3020-100) и от 0,2Uн*Кн до 1,19Uн*Кн (для СВ3020-250).

Амперметры и вольтметры выпускаются по ТУ 4221-020-16851585-2006.

CC3020

ЧАСТОТОМЕРЫ СС3020

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Выпускаются в двух конструктивных исполнениях:
- щитовом СС3020-Щ,
- настольном CC3020-H.
- Пределы допускаемой основной относительной погрешности измерений не более ±0,01%.
- Диапазон измеряемых частот от 40 до 5000Гц.
- Дианазон изменения входных напряжений от 30 до 250В.
- Гальванически развязанный интерфейс RS485
- Кроме функции измерения частотомер реализует

функцию контроля минимального и максимального значений измеряемой частоты. Выход измеряемой частоты за установленные значения индицируется световой индикацией на лицевой панели и при этом замыкаются контакты соответствующего реле.

- ♦ Диапазон установки уставок частоты: нижнего допускаемого значения измеряемой величины - 40....4999,5FII; верхнего допускаемого значения
- 40,5....5000Гц.
- ♦ Питание частотомера осуществляется: от сети переменного тока напряжением (85...260)В частотой (46...65)Гц или постоянным напряжением (120...300)В.
- ◆ Потребляемая мощность не более 4BA.
- ◆ Габаритные размеры: 144x72x120мм для СС3020-Щ, 150х72х195 для СС3020-Н.. Масса не более 0,4кг - для СС3020-ЦІ, не более 0,55кг для СС3020-Н.

Частотомеры выпускаются по ТУ 4221-021-16851585-2006.

CC3020

ВАТТМЕТРЫ И ВАРМЕТРЫ СРЗ020

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- □ **Номинальное значение** фазных напряжений $U_{\Phi H}$ =57,7B, линейных $-U_{JH}$ =100B.
- □ Номинальное значение фазных токов I_{ФН}=1А или $I_{\Phi H} = 5A$ (в зависимости от исполнения).
- Номинальное значение измеряемой активной(реактивной) мощности 173Вт (173вар) или 865Вт (865вар)
- Диапазон изменения фазных и линейных напряжений от 0,8 Uн до 1,2 Uн.
- □ Лиапазон изменения фазных токов от 0.01 Ін до 1.2 Ін.
- □ Дианазон измерения частоты от 45 до 850Гц.
- Диапазон изменения коэффициентов мощности: - $\cos \phi = 0.5$ (емк.) - 1-0.5 (инд.); - $\sin \varphi = 0.5$ (емк.) - 1-0.5 (инд.).
- Дианазон установки по гальванически развязанному интерфейсу Rs485 коэффициентов трансформации Кн от 1 до 20000, Кт от 1 до 6000.
- □ Пределы допускаемой основной приведенной **погрешности** измерений ваттметров равны $\pm 0.5\%$ к номинальному значению измеряемой активной мощности, варметров - $\pm 1,0\%$ к номинальному значению измеряемой реактивной мощности.
- Питание ваттметров и варметров СР3020 осуществляется: - от сети переменного тока напряжением (120...250)В частотой 45-55Гц; или постоянным напряжением (120...250)В.
- Потребляемая мощность не более 5ВА. Габаритные размеры 144х72х160мм. Масса не более 0,65кг.

Ваттметры и варметры выпускаются по ТУ 4221-014-16851585-2002.

<u>ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ</u> МНОГОФУНКЦИОНАЛЬНЫЕ СНЗ020

Измеряют действующие значения переменного тока и напряжения, активную, реактивную и полную мощности, частоту сети и передают их значения по двум гальванически развязанным интерфейсам RS485.

Предназначены для применения на электростанциях и подстанциях. Подключаются непосредсдственно к измерительным рансформаторам тока (ИТТ) и измерительным трансформаторам напряжения (ИТН).

Условное обозначение преобразователей при заказе: **CH3020/X - X - XXX - X**, (например, CH3020/2-3-220-5) **a b c d**

Где:

а - исполнение преобразователя СН3020:

- 1 преобразователь для отводящих фидеров,
- 2 преобразователь для секций шин.

b - схема включения:

- 3 - трехпроводная, - 4 - четырехпроводная.

с - напряжение питания:

- 220 сеть переменного тока напряжением (90-260)В частотой (48-52)Гц или постоянное напряжение (120-300)В,
- 24 постоянное напряжение (18-30)В.

d - номинальное значение входного тока (для CH3020/1):

- -1-1A,
- 5 5A.

Питание преобразователей осуществляется:

ПРЕОБРАЗОВАТЕЛЬ СН3020/1

для исполнений СН3020/X-X-220-X - от сети переменного тока напряжением (90-260)В и частотой (48-52)Гц или постоянным напряжением (120...300)В; для исполнений СН3020/X-X-24-X - постоянным напряжением (18...30)В.

Измерение параметров электрических сетей переменного тока и выдача результатов по интерфейсам:

ar	Наименование параметра		Изменяемь	іе параметр	ы
-		CH3020/1-4-		CH3020/2-4-	
Ш		XXX-X	XXX-X	XXX	XXX
	Действующее значение фазного	+	-	+	-
U	напряжения, Uф				
	Действующее значение линейного	-	+	-	+
5	напряжения, Uл				
П	Действующее значение междуфазного	+	-	+	-
1	напряжения, U _{МФ}				
	Действующее значение фазного тока I _Ф	+	+	-	-
	Активная мощность фазы нагрузки, РФ	+	-	_	-
_	Суммарная активная мощность, Р	+	+	-	-
	Реактивная мощность фазы нагрузки, QФ	+	-	-	-
	Суммарная реактивная мощность, Q	+	+	-	-
	Полная мощность фазы нагрузки, S_{Φ}	+	-	-	-
	Суммарная полная мощность, S	+	+	-	-
	Частота сети, f	+	+	+	+

Энергетика. Приборы и преобразователи электроизмерительные щитовые.

Пределы допускаемой основной приведенной погрешности:

Измеряемый параметр	±, %	Нормирующее значение
Действующее значение фазного напряжения	±0,2	U _{н.Ф}
Действующее значение линейного напряжения	±0,2	U _{н.л}
Действующее значение междуфазного напряжения	$\pm 0,2$	U _{нл}
Действующее значение фазного тока	$\pm 0,2$	I _H
Активная мощность фазы нагрузки	±0,5	$P_{H,\Phi}$
Суммарная активная мощность	± 0.5	P _H
Реактивная мощность фазы нагрузки	± 0.5	$Q_{H,\Phi}$
Суммарная реактивная мощность	$\pm 0,5$	Q _H
Полная мощность фазы нагрузки	$\pm 0,5$	$P_{H,\Phi}$
Суммарная полная мощность	±0,5	P _H
Частота сети	±0,01	f _{H3M}

Диапазоны изменения значений входных сигналов:

F	Іаименование параметра	Диапазон изменения
Напряжение фазно	От 0,2U _H до 1,2U _H	
Ток фазы		От 0,011 _Н до 1,21 _Н
Частота		От 48 до 52Гц
Коэффициент	cosφ	±(0 1 0)
мощности	sinф для CH3020/1-4-XXX-X	$\pm (0,5 \dots 1 \dots 0,5)$
	sinф для CH3020/1-3-XXX-X	$\pm (0,6 \dots 1 \dots 0,6)$

Номинальные значения входных токов, напряжений, измеряемых мощностей:

	Исполнение Напряжени Напряжение Ток Мощность фазы, Мощность						
исполнение		•					
	е фазное,	линейное	фазы,	$P_{H,\Phi}$, BT;	суммарная,		
	U _{Н.Ф} , В	(междуфазное),	I _H , A	Q _{Н.Ф} , вар;	Рн, Вт; Он, вар		
		U _{н.л} , В		$P_{H,\Phi}$, BA	P _H , B A		
CH3020/1-4-220-1	57,7	100	1	57,7	173,1		
CH3020/1-4-220-5	57,7	100	5	288,5	865,5		
CH3020/1-4-24-1	57,7	100	1	57,7	173,1		
CH3020/1-4-24-5	57,7	100	5	288,5	865,5		
CH3020/1-3-220-1		100	1	57,7	173,1		
CH3020/1-3-220-5		100	5	288,5	865,5		
CH3020/1-3-24-1		100	1	57,7	173,1		
CH3020/1-3-24-5		100	5	288,5	865,5		
CH3020/2-4-220	57,7						
CH3020/2-4-24	57,7						
CH3020/2-3-220		100					
CH3020/2 3 24		100					

Условня эксплуатации: температура окружающего воздуха от минус 25 до 50°C, относительная влажность воздуха до 95% при температуре 35°C.

Потребляемая мощность не более 4BA. Габаритные размеры - 144x72x135мм. Масса не более 0,4кг.50 С.

kV

min

CB30

ERIC

举

ERC 🐵

> e k · min

Энергетика. Приборы и преобразователи электроизмерительные щитовые.

УСТРОЙСТВА ИНДИКАЦИИ ЩИТОВЫЕ ЦИФРОВЫЕ СЕЗ020

Предназначены для индикации результатов измерения преобразователей CH3020. Они также могут самостоятельно подключаться по интерфейсу RS485 к устройствам телемеханики и ПЭВМ.

Устройства выпускаются в четырех исполнениях:

- СЕ3020/1 для индикации значений фазных или линейных напряжений;
- СЕ3020/2 для индикации значений фазных токов;
- СЕ3020/3 для индикации значений активной и реактивной мощностей;
- СЕ3020/4 для индикации значений частоты.

Устройства СЕ3020 имеют светодиодные индикаторы зеленого цвета свечения:

- CE3020/1 и CE3020/2 три четырехразрядных индикатора и знаки "A" "V";
- CE3020/3 два четырехразрядных индикатора плюс знаковый разряд и знаки "+", "-", "W", "War";
- СЕ3020/4 один пятиразрядный индикатор.

Питание устройств осуществляется через адаптер постоянным напряжением 5В. Потребляемая мощность, не более: - 5Вт для CE3020/1 и CE3020/2; - 4Вт для CE3020/3;

Габаритные размеры, не более: - 144х144х74 для CE3020/1, CE3020/2 и CE3020/3; - 144х72х74 для для CE3020/4.

Macca, не более: - 0,55кг для CE3020/1, CE3020/2 и CE3020/3; - 0,3кг для для CE3020/4.

Выпускаются по ТУ 4221-027-16851585-2007. Соответствуют ГОСТ 12977-84.

Не подлежат обязательной сертификации (заключение Госстандарта для приборов CE3020). Разработчик и изготовитель - ЗИП-Научприбор.

<u> ЦИФРОВЫЕ ЩИТОВЫЕ ПРИБОРЫ СЕРИИ 3021</u>

действующего значения, габарита 120х120мм, класса точности 0,2

Состав серии 3021:

- ◆ Амперметр СА3021 однофазный,
- ◆ Амперметр СА3021-х-3 трехфазный,
- ◆ Вольтметр СВ3021 однофазный,
- ♦ Вольтметр СВ3021-100-3 трехфазный,
- ♦ Ваттметр СР3021,
- **◆** Варметр СТ3021,
- ♦ Ваттварметр СК3021,
- ◆ Частотомер СС3021.

Приборы измеряют действующие значения тока, напряжения, активную и реактивную мощность, частоту сети и передают измеренные значения параметров сети по гальванически развязанному интерфейсу RS485.

Эпергетика. Приборы и преобразователи электроизмерительные щитовые

Все приборы серии 3021 подключаются непосредственно к измерительным трансформаторам тока (ИТТ) и (или) измерительным трансформаторам напряжения (ИТН). Приборы имеют режим установки по интерфейсу RS485 коэффициентов трансформации ИТТ (Кт) и ИТН (Кн) и индицируют значения измеряемых сигналов с учетом установленных коэффициентов трансформации.

Кроме функции измерения приборы **реализуют функцию контроля** минимального и максимального допустимых значений измеряемого параметра. Выход значения измеряемого параметра за границы установленных уставок индицируется миганием цифрового индикатора и свечением индикаторов "min" или "max", при этом срабатывает соответствующее реле и замыкает свои контакты.

Условия эксплуатации: для использования в стационарных условиях макроклиматических районов с умеренным климатом при температуре от минус 25°C до плюс 50°C и относительной влажности 90% по 30°C. Питание приборов осуществляется от сети переменного тока напряжением (90...260)В частотой (47...55)Гц или постоянным напряжением (120...300)В.

- **◆ Погребляемая мощность** для однофазных амперметров и вольтметров 5ВА (7,5ВА для остальных приборов серии).
- **◆ Габаритные размеры** приборов не более 120х120х90мм. Масса не более 0,55кг.

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и изготовитель ЗИП-Научприбор.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ одно и трехфазных АМПЕРМЕТРОВ CA3021

- ◆ Пределы основной допускаемой погрешности ±0,2% к номинальному значению измеряемого тока.
- ◆ Номинальное значение измеряемого тока Ін 1А или 5А.
- ♦ Динамический диапазон измеряемых токов от 0,01 Ін до 1,5 Ін.
- ◆ **Количество измеряемых каналов** 1 или 3 (для трехфазных амперметров).
- ♦ Частотный диапазон измеряемых токов от 45 до 850Гц.
- ◆ Потребляемая мощность 5ВА (7,5ВА для трехфазных амперметров).
- ◆ Габаритные размеры не более 120x120x90мм. Macca не более 0,55кг.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ одно и трехфазных ВОЛЬТМЕТРОВ СВ3021

- ◆ Пределы основной допускаемой погрешности ±0,2% к номинальному значению измеряемого напржения.
- ◆ Номинальное значение измеряемого напржения Uн 100В или 250В (для трехфазных - 100В).
- ◆ Динамический дианазон измеряемых напряжений:
- от 0,1 Uн до 1,5 Uн для CB3021-100,
- от 0,1 Uн до 1,2 Uн для СВ3021-250 (только однофазные).
- **♦ Количество измеряемых каналов** 1 или 3 (для трехфазных вольтметров).
- ◆ Частотный диапазон измеряемых напряжений от 45 до 850Гц. Амперметры и вольтметры выпускаются по ТУ 4221-034-16851585-2014.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧАСТОТОМЕРОВ СС3021

- Пределы основной допускаемой погрешности ±0,01%.
- ♦ Диапазон измеряемых частот от 40 до 5000Гц.
- Диапазон входного напряжения от 30 до 250В.
- ◆ Потребляемая мощность не более 5ВА.
- **◆ Габаритные размеры** не более 120х120х90мм. Масса не более 0,55кг. **Частотомеры выпускаются** по ТУ 4221-035-16851585-2009.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВАТТМЕТРОВ СР3021

- **◆ Пределы основной допускаемой приведенной погрешности** ±0,5% к номинальному значению измеряемой активной мощности.
- **♦ Номинальное значение входных напряжений** Uн 57,7В для фазных напряжений и100В для линейных напряжений.
- Номинальное значение входных токов Ін 1 или 5А.
- ♦ Дианазон изменения входных напряжений от 0,8Uн до 1,2Uн.
- ◆ Диапазон изменения входных токов от 0,01 lн до 1,2 lн.
- ◆ Дианазон изменения частоты от 48 до 52Гц.
- ◆ Диапазон изменения **cosφ** ±(0...1...0).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВАРМЕТРОВ СТ3021

- ◆ Пределы основной допускаемой приведенной погрешности ±0,5% к номинальному значению измеряемой реактивной мощности.
- **♦ Номинальное значение** входных напряжений Uн 57,7В для фазных напряжений и 100В для линейных напряжений.
- Номинальное значение входных токов Ін 1 или 5А.
- ◆ Диапазон изменения входных напряжений от 0,8Uн до 1,2Uн.
- ◆ Диапазон изменения входных токов от 0,01 lн до 1,2 lн.
- ♦ Диапазон изменения частоты от 48 до 52Гц.
- ◆ Диапазон изменения sinφ:
- $\pm(0,5...1...0,5)$ для 4-х проводной схемы,
- $\pm(0,6...1...0,6)$ для 3-х проводной схемы.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВАТТВАРМЕТРОВ СК3021

- ◆ Пределы основной допускаемой приведенной погрешности ±0,5% к номинальному значению измеряемой активной или реактивной мошности.
- ◆ **Номинальное значение** входных напряжений Uн 57,7В для фазных напряжений и 100В для линейных напряжений.
- Номинальное значение входных токов Ін 1 или 5А.
- ◆ Дианазон изменения входных напряжений от 0,8Uн до 1,2Uн.
- ◆ Диапазон изменения входных токов от 0,01 lн до 1,2 lн.
- ♦ Диапазон изменения частоты от 48 до 52Гц.
- ♦ Дианазон изменения соѕФ ±(0...1...0),
- $sin\phi \pm (0,5...1...0,5)$ для 4-х проводной схемы,

 $\pm(0,6...1...0,6)$ для 3-х проводной схемы.

Ваттметры, варметры и ваттварметры выпускаются по ТУ 4221-036-16851585-2009.

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены

МАГАЗИНЫ НАГРУЗОК МРЗ025

Предназначены для использования в качестве нагрузки при **поверке трансформаторов напряжения** с обмоткой 100V или 57,7V ($100/\sqrt{3}$) в цепях переменного тока частотой 50 ± 1 Hz.

ОСНОВЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение	Номин.	Допустимое	Номин.	Допустимое				
секции	значение	отклонение	значение	отклонение				
(номин. зна-	активного	активного	индуктив-	индуктив-				
чение полной	1	сопротивле-	ности на-	ности на-				
мощности	ления на-	ния нагрузки	грузки, Н	грузки, не				
нагрузки),VA	грузки, Ω	не более, Ω		более, Н				
Технические характеристики MP3025 (100V-80,42VA):								
40 200 ±8 0,477 ±0.019								
20	400	± 16	0,955	± 0,038				
10	800	± 32	1,910	± 0,076				
5	1600	± 64	3,820	± 0,153				
2,5	3200	± 128	7,639	± 0,305				
1,67	4700	± 188	11,440	± 0,458				
1,25	6400	± 256	15,280	± 0,611				
Технические	характер	истики МР302	25 (57,7V -	80,42VA):				
40	66,6	±2,66	0,159	± 0.00636				
20	133,2	± 5,33	0,318	± 0,0127				
10	266,6	± 10,6	0,636	± 0,0254				
5	532,6	± 21,3	1,272	± 0,0509				
2,5	1065,4	± 42,6	2,545	\pm 0,102				
1,67	1594	± 63,7	3,810	\pm 0,152				
1,25	2130	± 85,2	5,090	± 0,203				
	характер	истики МР302	25 (100V -	200VA):				
40	200	± 8	0,477	± 0.019				
40	200	± 8	0,477	± 0,019				
40	200	± 8	0,477	± 0,019				
40	200	± 8	0,477	± 0,019				
40	200	± 8	0,477	± 0,019				

Технические характеристики MP3025 (57,7V - 200VA):						
40	66,6	±2,66	0,159	± 0,00636		
40	66,6	±2,66	0,159	\pm 0,00636		
40	66,6	±2,66	0,159	± 0,00636		
40	66,6	±2,66	0,159	± 0,00636		
40	66,6	±2,66	0,159	± 0,00636		

- Пределы допускаемого значения основной погрешности активной и реактивной составляющих проводимости каждой ступени магазина и суммарного значения (при включении всех ступеней) составляет $\pm 4\%$ от номинального значения включенной нагрузки в рабочем диапазоне температур.
- ◆ Номинальное значение активных сопротивлений и индуктивности, а также их допускаемые отклонения соответствуют указанным значениям в таблице.
- ◆ Номинальное значение полной мощности, при соsφ=0,8 1,25; 1,67; 2,5; 5; 10; 20; 40VA

Энергетика. Приборы для поверки и догрузки трансформаторов

20

BA

СДЕ

20

15

BA

4%

5 12.5

0

25

4%

5 12.5

10

25

(в сумме 80,42VA) и 40; 40; 40; 40; 40VA (в сумме 200VA).

- Переключаемые секции нагрузок могут быть включены в любом наборе.
- ♦ Температура окружающей среды от 10 до 35.
- **◆ Габариты** (Г,Ш,В) 220х235х90мм. **Масса** не боле 3,5кг.

Вынускаются по ТУ 4225-030-16851585-2007.

На фото показаны и исполняются по заказу варианты параллельного подключения магазинов нагрузок в стоечном (передвижном) исполнении с полной мощностью нагрузки (в данном случае) от 1,25VA до 1082,42VA и 482,42VA с возможностью дистанционного управления.

Сертифицированы, зарегистрированы в Госреестре средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и изготовитель ЗИП-Научприбор.

МАГАЗИНЫ НАГРУЗОК МРЗ027

Предназначены для использования в качестве нагрузки при **поверке трансформаторов тока** с номинальным током нагрузки 1A и 5A. Является универсальным устройством, позволяющим заменить два магазина нагрузок P5018/1 и P5018/5.

- ◆ Номинальное значение силы переменного тока частотой (50±1)Гц, подводимого к магазину - 1А или 5А.
- ◆ Номинальные значения нагрузок для трансформаторов тока с номинальным током 1A: 1,0BA; 1,25BA; 2,5BA; 3,75BA; 5,0BA; 6,25BA; 7,5BA; 10BA; 12,5BA; 15BA; 20BA; 25BA; 30BA; 40BA; 50BA.
- ◆ Номинальные значения нагрузок для трансформаторов тока с номинальным током 5A: 1,25BA; 2,5BA; 3,75BA; 5,0BA; 6,25BA; 7,5BA; 10BA; 12,5BA; 15BA; 20BA; 25BA; 30BA; 40BA; 50BA.

 • Пределы допускаемого значения основной погрешности нагрузок от их номинального значения - ±4%.

◆ cosφ=0,8.

◆ Температура окружающей среды от +15 до +35°C.

◆ Габариты 340(глубина) х380х130мм. Масса не более 4кг.

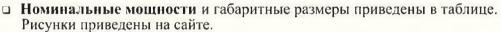
Для получения значений вторичной нагрузки более 50ВА возможно послед овательное включение двух магазинов.

Выпускаются по ТУ 4225-028-16851585-2006. Сертифицированы, зарегистрированы в Госресстре средств измерений. Документация, сертификаты, свидетельства представлены Разработчик и изготовитель ЗИП-Научприбор.

<u>ДОГРУЗОЧНЫЕ РЕЗИСТОРЫ ДЛЯ</u> ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ И ТОКА

Другое название - догрузочные (догрузки) или балластные сопротивления. Предназначены для догрузки вторичных цепей измерительных трансформаторов напряжения и тока до уровня от 25 до 100% номинальной мощности, указанной в паспорте трансформатора, в соответствии с ГОСТ 1983-2001, ГОСТ 7746-2001, МИ 2022-2006, МИ 2023-2006. Имеют два обозначения: МР3021-Н... и МР3021-Т... Сертифицированы. Изготовитель ЗИП-Научприбор.

Догрузочные резисторы для трансформаторов напряжения МР3021-Н...


Применяются для догрузки вторичных цепей трансформаторов напряжения, номинальное напряжение, Uh: 100B; $100/\sqrt{3}B$; 110B; $110/\sqrt{3}B$;.

Энергетика. Приборы для поверки и догрузки трансформаторов

Изготавливаются в одно и трехфазном исполнении, а также с отличными от приведенных техническими характеристиками.

Предусмотрена защита от несанкционированного доступа.

- ♦ Рабочий диапазон напряжений 0,8 1,2Uн.
- ◆ Рабочий диапазон температур от -40 до +50°C.
- ◆ Допускаемая погрешность сопротивления ±10% за 10 лет эксплуатации.
- ◆ Резисторы герметизированы, могут применяться в открытых и закрытых распредустройствах.
- ◆ Относительная влажность до 90% при температуре 25°C.
- ◆ Выводы догрузочных резисторов изготовлены из термостойкого подводящего кабеля длиной 1м с наконечником под болт М4.

Номинальная		Разм	іеры, м	IM		Масса, кг,
мощность, ВА	A	A1	В	C	D	не более
5, 10	119	145	94	34	46	0,36
20*; 30*	119	143	94	34	61	0,55
40*; 50*	187	199	118	38	65	0,95
60*; 70*; 80*	222	250	1.46	5.5	89	1,7
90**; 100**	222	250	146	55	97	2,3
Трехфазные 3 х 3	119	145	94	34	46	0,36
Трехфазные 3 х 5; 3 х 10	187	199	118	38	50	0,72
Трехфазные 3х20*	222	250	146	55	89	1,7
Трехфазные 3х30**	222	250	146	33	97	2,3

Примечание: * корпус с радиатором, ** корпус с двумя радиаторами.

В случае необходимости применения резисторов с большей мощностью соединяются два догрузочных резистора параллельно.

Пример обозначения при заказе догрузочного резистора для трансформатора напряжения (H) с напряжением 100/√3В и номинальной мощностью 50ВА: MP3021-H-100/√3В-50ВА. Форма заявки (желательно, но не обязательно), методические рекомендации по расчету и требования к монтажу догрузочных резисторов изложены на сайте.

Выпускаются по ТУ 6199-022-16851585-2005. Разработчик и изготовитель ЗИП-Научприбор.

Догрузочные резисторы для трансформаторов тока (МР3021-Т...)

Предназначены для догрузки измерительных трансформаторов тока с ном инальными токами выходных обмоток 1A и 5A. Резисторы не вызывают допо лнительной угловой погрешности. Выпускаются в 1 и 3 фазном исполнении.

Технические характеристики

- Допускаемая погрешность номинального значения сопротивления ±10%.
- Максимальный непрерывный ток составляет 1,1 Іном.
- Перегрузочная способность: 30 Іном в течение 1сек. По спецзаказу до 60 Іном в течение 1сек. Циклические воздействия: 30 Іном два импульса длительностью 1сек с перерывом в 2сек.
- Рабочий диапазон температур от -40 до +50°C.
- ◆ Относительная влажность до 90% при температуре 25°C.

Раздел 5.

Энергетика. Приборы для поверки и догрузки трансформаторов

ŒHIDMP3d21-T-5A	Номинальный ток выходной обмотки	Номинальная мощность рас		-	ІТНЫ€ Ы, ММ			Масса, кг, не
0R16±10% Ω 4BA	трансформатора, А	сеивания, ВА	A	A1	В	C	D	более
	1A	1	30	-	90	14	-	0,1
	1A	2; 3; 4	30	-	90	14	-	0,1
	1A	5	30	-	90	14	-	0,15
	1A	10; 15	30	-	111	60	-	0,3
	1A	20; 30	102	-	119	112	62	0,45
	1А Трехфазные	3x2; 3x3; 3x4	30	102	111	60	-	0,2
	1А Трехфазные	3x5	30	70	111	-	56	0,3
	1А Трехфазные	3x10	34	104	119	-	70	0,65
	1А Трехфазные	3x15; 3x20; 3x30	38	128	186	176	74	1,2
	5A	1; 1,5; 2	30	-	90	14	-	0,1
	5A	2,5; 3; 4; 5	30	-	90	14	-	0,11
1P3021-T-5A	5A	10	30	-	111	60	-	0,3
10%Ω 4BA	5A	15	-	-	111	60	62	0,4
107032 4071	5A	20; 30	102	-	119	112	74	0,45
	5А Трехфазные	3x2; 3x2,5; 3x4	30	102	111	60	-	0,35
	5А Трехфазные	3x5	30	70	111	-	56	0,45
	5А Трехфазные	3x10; 3x15	34	104	119	-	70	1,0
	5А Трехфазные	3x20; 3x30	38	128	186	176	74	1,2

3 10BA

• По заказу могут быть изготовлены резисторы с другими значениями мощности, но не более 30ВА на фазу. Nº 0780 20

• **Крепление** догрузочных резисторов мощностью до 5ВА предусмотрено на DIN-рейку шириной 35мм, свыше 5ВА - винтами.

Пример обозначения при заказе догрузочного резистора для трансформатора тока (Т) с номинальнымтоком 1А и мощностью 5ВА: для однофазных - МР3021-Т 1А-5ВА, для трехфазных - MP3021-T-1A (3x5)BA.

Выпускаются по ТУ 6199-022-16851585-2005. Патент РФ №2262761. Разработчик и изготовитель ЗИП-Научприбор.

Разлел 6.

Прецизионные резисторы, делители, шунты.

РЕЗИСТОРЫ ВЫСОКОСТАБИЛЬНЫЕ ИЗМЕРИТЕЛЬНЫЕ МРЗ000

Отличаются предельно высокой временной стабильностью сопротивления, малым температурным коэффициентом сопротивления (ТКС), высокой точностью подгонки, отсутствием шумов. Предназначены для цепей постоянного и переменного тока в качестве элементов сопротивления, обеспечивающих основные метрологические параметры прецизионных электро и радиоизмерительных приборов, делителей напряжения и калибраторов. Могут быть применены в качестве встроенных мер электрического сопротивления, а также шунтов постоянного и переменного тока.

MP3021-T-5A ±10% Ω 4BA

Прецизионные резисторы, делители, шунты

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- ♦ Любое номинальное значение сопротивления в диапазоне (1 100000) Ом.
- Нестабильность (изменение значения сопротивления за год) до 0,0005%
- ◆ Погрешность определения действительного значения сопротивления в диапазоне от 1 до 10000 Ом на синусоидальном переменном токе частотой 100Гц от 0,0002 до 0,001% в зависимости от значения сопротивления.
- ◆ Постоянная времени не более, сек: 1х10-8 для резисторов 10 1000 Ом, 5х10-8 для резисторов 1 10000 Ом, 40Х10-8 для резисторов 100000 Ом.
- ◆ Верхний предел частотного диапазона 20кГц для резисторого номинальными значениями сопротивления от 1 до 10000 Ом.
- ◆ Выдерживают одиночные термоудары от -50 до +100°C.
- Четырехзажимная схема для навесного и печатного монтажа
- ♦ Габаритные размеры 50,5х29х9мм. Масса 29г. Срок службы не менее 15 лет.

год) до 0,000	5%.		← 23	> "	9
	MP 3000 0,05 W 100 Ω ±0,005 % Б №824	20,2		0	05
сторов Ом. нтажа.	tee 15 ner	. *	5,1	1,5	Q,C №

Номинальное значение сопро- тивления, Ом	Допускаемое откло- нение от номиналь- ного значения, %	TKC 10 ⁻⁶ , 1/°C	Номинальная мощность рас- сенвания, Вт	Нестабиль- ность, % за год	
	0,005	±1-3	0,05	0,001	
от 1 до 100000	0,01	±1-5	0,125	0,001	DI
	0,1	±10	0,5	0,002	

Промежуточные значения номинального сопротивления любые. Условия применения (температура среды): нормальные $20\pm2^{\circ}$ C; рабочие от 5 до $+70^{\circ}$ C. Выпускаются по ТУ 4229-032-05766445-2000. Разработчик и изготовитель - ЗИП-Научприбор.

ОСОБОСТАБИЛЬНЫЕ РЕЗИСТОРЫ МРЗ000М

С регулируемым экстремумом температурной зависимости для комплектования однозначных и многозначных мер сопротивления.

Диапазон от 1 Ом до 100кОм. Любое номинальное значение.

Годовая нестабильность до $\pm 0,0001\%$. ТКС не более $\pm 1\cdot 10^{-6}$ в точке экстремума.

Остальные характеристики соответствуют характеристикам МР3000.

Разработчик и изготовитель - ЗИП-Научприбор.

<u>ДЕЛИТЕЛИ НАПРЯЖЕНИЯ и РЕЗИСТИВНЫЕ</u> СБОРКИ ПРЕЦИЗИОННЫЕ МД3000

- Допускаемое отклонение К_а от номинального от 0,005%.
- Стабильность R_{вх} и K_в в рабочих условиях применения за год от 0,0002%.
- Температурный коэффициент сопротивления α (от ± 1 до ± 5) 10^{-6} $1/^{\circ}$ С.
- Температурный коэффициент отношения ТКО (от ±0,7 до ±2)10-6 1/°С.
- Максимальная мощность рассеяния до 100мВт.
- Входное сопротивление R_{вх}, до 10⁵ Ом.
- Допускаемое отклонение действительного значения R_{пх} от номинального - от 0,005%.
- ◆ Количество резисторов в схеме до 10шт.
- Количество выводов корпуса до 24шт.
- Рабочая температура эксплуатации от 5 до 70°C
- ◆ Габариты (без учета выводов) 37х36х9мм. Масса 25г.

Коэффициенты деления по заказу любые. Допускается как вертикальное (на выводы), так и горизонтальное (на крепежные винты) крепление на плате.

Выпускаются по ТУ4229-033-05766445-2000. Разработчик и изготовитель ЗИП-Научприбор.

R = 10

1:1

MA 3001-5 U=10 ∨ R=10 κΩ 1:10 1:100 ±0,005% A

ПРЕЦИЗИОННЫЕ РЕЗИСТОРЫ МРЗ040

для цепей постоянного и переменного тока

Предназначены для применения в электрических цепях постоянного и переменного тока, где требуется обеспечение высокой температурной и вр еменной стабильности сопротивления, а также высокая точность действительного значения сопротивления. Конструктивное исполнение - двух или четырехвыводной резистор в герметизированном корпусе с односторонними жесткими медными выводами. Патент РФ №2262761.2005г

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Дианазон номинальных значений сопротивлений по ряду Е192: 1 1 000 000 Ом. По заказу - любые значения.
- **◆ Точность подгонки** к номинальному значению, %: $\pm 0,01$; $\pm 0,02$; $\pm 0,05$; $\pm 0,1$.
- ЗОБРЕТЕНИЕ ◆ Точность калибровки номинального значения сопротивления: ±0,005% (в диапазоне 1 - 10 Ом - до ±0,0005%).
 - Температурный коэффициент сопротивления, ppm/°C: ±5; ±10; ±20; ±30.
 - ◆ **Нестабильность** действительного значения сопротивления: 0,01 0,02% за 2000 часов рабочего состояния.

Типоразмер	P	азмеры, м	D Pr	
корпуса	A	В	C	P _{nom} , BT
1.	16	13	5	0,25
2	23	17	9	0,5
3	30	24	12	1,0
4	35	35	12	2,0

8. Пробивное напряжение между выводами резистора и корпусом 500В.

9. Масса 5-20г.. Разработчик и изготовитель - ЗИП-Научприбор.

РЕЗИСТОРЫ ПРЕЦИЗИОННЫЕ МРЗ042

Предназначены для применения в качестве опорных резисторов и шунтов в метрологической аппаратуре для поверки счетчиков электрической энергии. Примеры характеристик и размеров приведены в табл.

R н, Ом	Класс точности	Ток макс., А	Размеры, мм
0.1 - 1.0	0,1 - 0,001	3	55x30x10
0.01 - 0.1	0, 1 - 0, 01	15	55x60x20
0.001 - 0.01	0,1-0,01	150	65x105x30

- **TKC** ± 1 ppm/°C; ± 10 ppm/°C.
- Номинальные значения сопротивления любые в диапазоне 0,001-10 Ом.
- Ток нагрузки от 0,15 до 150А. Частотный дианазон до 1,5кГц.

Патент РФ №2189084.2002. Разработчик и изготовитель - ЗИП-Научприбор.

РЕЗИСТОРЫ ИЗМЕРИТЕЛЬНЫЕ НИЗКООМНЫЕ высокой мощности МР3044, МР3045

- ◆ Годовая нестабильность действительного значения сопротивления 0,001%.
- Точность подгонки к номинальному значению сопротивления: ±0,1%; ±0,05%; ±0,02%.
- Температурный коэффициент сопротивления (ТКС): ±10ppm/°С.
- Номинальные значения сопротивления для MP3044 от 0,0001 до 0,001 Ом, лля MP3045 - 0.001 Oм.
- Мощность рассеивания для MP3044 до 300Вт, для MP3045 10Вт.

	R HOM, OM	Ток, А	U ном, mВ	Габаритн. Размеры, мм
MP3044	0,0005	750	375	200x80x11
WIP3044	0,0001	до 1000	100	150x80x25
MP3045	0,001	100	100	105x35x6
D 6	-		OLLIE IX	

🐹 🐹 🕦 🥱 🥳 🥂 Разработчик и изготовитель - ЗИП-Научприбор.

RASI OPEN

№ 2262761

O IIpe/j/nm

рителы

ай Васильевич

ma № 2002115889 орител изобретения пистріпрови ю в Гол

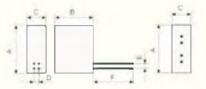
к действия плиента и

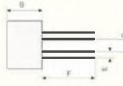
co Semee va

Punosod uz

РЕЗИСТОРЫ ВЫСОКОСТАБИЛЬНЫЕ НИЗКООМНЫЕ

повышенной мощности МР3050


Предназначены для применения в качестве опорных резисторов или шунтов в электрических цепях, где требуется обеспечение высокой температурной и временной стабильности, а также необходима высокая точность действительного значения сопротивления.



Конструктивное исполнение - четырехзажимный резистор в герметизированном корпусе с односторонними жесткими медными выводами. Патент РФ №2189084.2002г.

Диапазон номинальных значений 0,001 – 10,0 Ом.

Точность подгонки к номинальному значению сопротивления, %:

 $\pm 0,001$; $\pm 0,002$; $\pm 0,005$; $\pm 0,01$; $\pm 0,02$; $\pm 0,05$; $\pm 0,1$.

Точность калибровки действительного значения сопротивления, %: ±0,0005.

Температурный коэффициент сопротивления, ppм/°C: ± 1 ; ± 3 ; ± 5 ; ± 10 .

Годовая нестабильность действительного значения сопротивления, % / год: 0,001.

Исполне-	Мощ-		Размеры, мм						Диаметр
ние	ность Вт	A	В	C	D	E	F	G	выводов мм
Вариант 1	0,5	15(20)**	20(15)**	7	2,5	2,5	25	-	1,0
	1	30	24	6	2,5	5	25	-	1,0
	3	30	24	9	5	5	25	-	1,5
Вариант 2	0,5	15(20)**	20(15)**	7	-	2,5	25	5(7,5)**	1,0
(пост. ток)	1	30	24	6	-	5	25	15	1,0
	3	30	24	9	-	5	25	15	1.5

** - варианты исполнения резисторов 0,5Вт по отдельному заказу.

Мощность рассеивания при t=+23°C: номинальная - 1,0Вт; максимальная - 3,0Вт; с дополнительным радиатором - 5,0Вт.

Частотный диапазон 0–10кГц (частотные характеристики по согласованию).

Температурный диапазон применения от -10 до +85°C.

Пробивное напряжение между выводами резистора и корпусом 500В. **Масса** 10-200г. По отдельному заказу могут изготавливаться резисторы других конструктивных исполнений на мощности 5-40Вт, совмещенные с радиаторами.

Вариант 1 (выводы несимметричны). Вариант 2 (выводы симметричны). Выпускаются по ТУ 6199-018-16851585-2004. Разработчик и Изготовитель - "ЗИП-Научприбор"

РЕЗИСТОРЫ БЕЗРЕАКТИВНЫЕ МРЗО60 (ШУНТЫ)

Предназначены для применения в амперметрах, ваттметрах, счетчиках электроэнергии и мультиметрах в качестве опорных резисторов и шунтов при измерении токов в пределах от 1 до 30А. Защищены патентами РФ №2189084, 2002г. и №2262761, 2005г.

	Дианазон токов, А	Падение напряжения на резисторах, мВ*	Класс точности**	Размеры, мм, не более
١	1 - 5	50	0,1	24x28x8
١	6 - 10	50	0,1	24x30x10
ı	11 - 30	50	0,1	50x70x15

* - по требованию заказчика резисторы могут изготавливаться на 60; 75; и 100мВ.

** - по требованию заказчика шунты могут изготавливаться классов точности 0,05; 0,2; 0,5. Особенностью резисторов является широкий частотный диапазон применения (до 20кГц) при минимальных габаритных размерах. Разработчик и изготовитель - ЗИП-Научприбор.

A

Приборы обнаружения хищения электроэнергии и поиска неисправности

АВТОНОМНЫЙ ИНДИКАТОР СЕТЕВОГО ТОКА "АИСТ" ЭИЗ008 и ИНДИКАТОР "ПОИСК" ЭИЗ007

Применяются в целях борьбы с хищениями электроэнергии, для выявления токов утечки и поиска скрытой проводки

АИСТ

Предназначен для определения токовой нагрузки на электрических вводах 220-380В переменного тока частотой 50Гц жилых домов и хозяйствующих субъектов без разрыва токовых цепей. Сравнение значений тока в фазном и нулевом проводе на вводе, определенных с помощью индикатора, позволяет сделать вывод о хищении электроэнергии на объекте или какой-либо неисправности в электрических цепях.

Для кабеля величина тока при охвате кабеля магнитопроводом показывает величину хищения, отсутствие тока – отсутствие хищения.

Индикатор обеспечивает возможность измерения тока без разрыва цепей на высоте до 7,5м от уровня земли. Конструктивно индикатор состоит из четырех стеклопластиковых штанг, сочленяющихся друг с друг ом при помощи разъемов. На верхней штанге расположен разъемный магнитопровод, охватывающий провод, ток в котором необходимо измерить. На нижней штанге расположен измерительный прибор, фиксирующий значения тока.

В качестве измерительного прибора использован цифровой мультиметр, имеющий функцию запоминания и выбора пределов измерения

• Пределы измерения:

- токи до 500А; точность измерения 3%;

- напряжение переменного и постоянного тока до 600В, точность измерения 2%;
- сопротивление до 2,0МОм. Прозвонка электрических цепей.

• Питание: два элемента типа AAA по 1,5В.

- ◆ Условия эксплуатации: температура от минус 10 до плюс 40°C, относительная влажность воздуха 80% при +25°C.
- ◆ Габаритные размеры в рабочем положении 6600 x 70 x 80 мм., в походном положении (чехле) 1700 x 100 x 100 мм. Масса 2,5 кг.

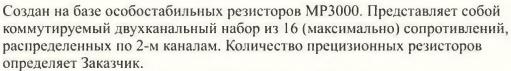
Выпускаются по ТУ 4223-019-05766445-98

Не подлежат обязательной сертификации (не входят в "Номенклатуру продукции и услуг (работ), в отношении которых законодательными актами РФ предусмотрена их обязательная сертификация". Номенклатура введена в действие с 01.12.2002г. постановлением Госстандарта РФ от 30.07.2002г. №64. Разработчик и изготовитель ЗИП-Научприбор.

поиск

Предназначен для поиска скрытой проводки, поиска скрытых под слоем штукатурки либо под деревянными панелями токовых цепей (фазного провода) 220В переменного тока частотой 50Гц в жилых домах и других коммунально-бытовых зданиях и сооружениях. Обеспечивает обнаружение провода под напряжением, расположенного на расстоянии

до 1м (при максимальной чувствительности).


- ◆ Точность обнаружения ±2,5см (при минимальной чувствительности).
- ◆ Питание использован элемент питания типа "Крона".
- Условия эксплуатации: температура от -10 до +45°C, относительная влажность воздуха 80% при +25°C.

♦ Габаритные размеры - 205х47х20мм, масса - 0,15кг.

Нахождение провода отмечается световым и звуковым сигналом. в схему включен полосовой фильтр 45 - 65Гц, обеспечивающий более точное нахождение скрытого (замаскированного) провода. Выпускаются по ТУ 4224-023-05766445-98. Не подлежат обязательной сертификации (не входят в "Номенклатуру продукции и услуг (работ), в отношении которых Законодательными актами РФ предусмотрена их обязательная сертификация". Номенклатура введена в действие с 01.12.2002г. постановлением Госстандарта РФ от 30.07.2002г. №64. Разработчик и изготовитель ЗИП-Научприбор.

ОСНОВНЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество прецизионных резисторов - до16.

- ♦ Количество каналов воспроизведения 2.
- ♦ Номинальные сопротивления резисторов от 1,0 Ом до 12 кОм.
- Нестабильность сопротивлений за 1 год: типичная ±0,001%;

- индивидуальная до $\pm 0.0005\%$.

◆ Габаритные размеры 240х200х115мм. Масса не более 1,6кг. При заказе заявляются любые значения сопротивлений в указанном интервале сопротивлений. Выпускаются по ТУ 4225-027-05766445-99. Разработчик и изготовитель ЗИП-Научприбор.

для петрофизических исследований

Применяется для калибровки средств измерений электрического удельного сопротивления образцов породы в нормальных условиях. В качестве резистивного элемента используется точный ситаллофольговый резисторный элемент, используемый в мерах сопротивления.

ехнические характеристики

- ♦ Любое номинальное значение сопротивления в диапазоне от 1 до 100000 Ом.
- ◆ Нестабильность (изменение значения сопротивления за год) не более 0,002%.
- ◆ Температурный коэффициент сопротивления ± 2·10°1/°С.
- ♦ Номинальная мощность рассенвания 0,05Вт.
- **◆ Допускаемое отклонение сопротивления от номинального** от 1 до 9,9 Ом 0,05%, от 10 до 99 Ом 0,02%, от 100 до 100000 Ом 0,01%.
- Выдерживают одиночные термоудары от -50 до +100°С.
- Условия применения (температура среды) нормальные 20 ± 5°C; рабочие от +5 до +70°C.
- ♦ Габаритные размеры 44х30мм. Масса 95г.

ВНИМАНИЕ! По требованию Заказчика могут быть разработаны и изготовлены эталонные измерительные резисторы MP3001-П для калибровки средств измерения в пластовых условиях, в том числе для установки AUTOLAB 1500 и аналогичных. Разработчик и изготовитель ЗИП-Научприбор.

ПЕРЕКЛЮЧАТЕЛЬ ДЕКАДНЫЙ PD-1

Предназначен для непосредственной коммутации электрических цепей с нормированным значением переходного сопротивления в прецизионных измерительных приборах: многозначных мерах электрического сопротивления, измерительных мостах, потенциометрах и др. Патенты РФ №2370845, №2594891.

Технические характеристики:

Коммнутируемый ток 0 - 25А.

Переходное сопротивление коммутируемой пары контактов 0,001 Ом.

Вариация переходного сопротивления коммутируемой пары контактов $\pm 0,0005$ Ом. Термо ЭДС коммутируемой пары контактов < 1мкВ.

Максимальное число коммутируемых контактов: 12 (по заказу - любая комбинация до 12). Пробивное напряжение между контактами не менее 1000В.

Габаритные размеры 60x60x30мм (без длины оси, выступающей за пределы установочной панели). **Масса** 0,08кг. Разработчик и изготовитель - 3ИП-Научприбор.

DAYWIN WEOL

Нормативная документация

Гост 8.022-91 "ГСИ. ГСЭ и Государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от 1x10-10 до 30A."

Гост 8.237-2003 ГСИ. Меры электрического сопротивления однозначные. Методика поверки.

Гост 8.401-80 "ГСИ. Государственная система обеспечения единства измерений. Классы точности средств измерений. Общие требования"

Гост 8.767-2011 "ГСИ. Государственная поверочная схема для средств измерений силы переменного электрического тока от $1x10^{-8}$ до 100A в диапазоне частот от $1x10^{-1}$ до 10^{6} Гц."

Гост 12977-84 "Изделия ГСП (государственная система промышленных приборов и средств автоматизации). Общие технические условия."

Гост 14014-91 "Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний."

Гост 1983-2015 "Трансформаторы напряжения. Общие технические условия"

Гост 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия."

Гост 23737-79 "Меры электрического сопротивления. Общие технические условия."

Гост 7746-2015 "Трансформаторы тока. Общие технические условия"

Гост Р 51121-97 "Товары непродовольственные. Информация для потребителя. Общие требования"

Гост Р 51317.3.2 "Совместимость технических средств электромагнитная. Эмиссия гармонических составляющих тока техническими средствами."

Гост Р 51317.4.2 "Совместимость технических средств электромагнитная. Устойчивость электрическим разрядам."

Гост Р 51317.4.2 "Совместимость технических средств электромагнитная. Устойчивость к провалам, кратковременным прерываниям и изменениям электропитания."

Гост Р 51350 "Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования."

Гост Р 51522 "Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения."

ТР ТС 004/2011 "Об утверждении перечня продукции, в отношении которой подача таможенной декларации сопровождается представлением документа об оценке соответствия требованиям технического регламента таможенного союза "О безопасности низковольтного оборудования"

ТР ТС 020/2011 "Об утверждении перечня продукции, в отношении которой подача таможенной декларации сопровождается представлением документа об оценке соответствия требованиям технического регламента таможенного союза "Электромагнитная совместимость технических средств."

МИ 1935-88 "Государственная система единства измерений. Государственная поверочная схема для средств измерений электрического напряжения до 1000В в диапазоне частот от $1x10^{-2}$ до $3x10^{9}$ Гц."

МИ 2022-2006 "ГСИ. Нормализация нагрузки вторичных цепей измерительных трансформаторов тока."

МИ 2023-2006 "ГСИ. Нормализация нагрузки вторичных цепей измерительных трансформаторов напряжения."

42

स्त्र का का का का का का

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93